A176735 a(n) = (n+8)*a(n-1) + (n-1)*a(n-2), a(-1)=0, a(0)=1.
1, 9, 91, 1019, 12501, 166589, 2394751, 36920799, 607496041, 10622799089, 196677847971, 3843107102339, 79025598374461, 1705654851091749, 38551739502886471, 910569176481673319, 22431936328103456721, 575367515026293191129, 15340898308261381733611, 424560869593530584247819
Offset: 0
Examples
Necklaces and 9 cords problem. For n=4 one considers the following weak 2-part compositions of 4: (4,0), (3,1), (2,2), and (0,4), where (1,3) does not appear because there are no necklaces with 1 bead. These compositions contribute respectively !4*1,binomial(4,3)*!3*c9(1), (binomial(4,2)*! 2)*c9(2), and 1*c9(4) with the subfactorials !n:=A000166(n) (see the necklace comment there) and the c9(n):=A049389(n) numbers for the pure 9-cord problem (see the remark on the e.g.f. for the k-cord problem in A000153; here for k=9: 1/(1-x)^9). This adds up as 9 + 4*2*9 + (6*1)*90 + 11880 = 12501 = a(4).
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..400
Crossrefs
Cf. A176734 (necklaces and k=8 cords).
Programs
-
Mathematica
RecurrenceTable[{a[0]==1,a[1]==9,a[n]==(n+8)a[n-1]+(n-1)a[n-2]},a[n],{n,20}] (* Harvey P. Dale, Oct 20 2011 *) Table[(-1)^n HypergeometricPFQ[{10, -n}, {}, 1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
Formula
E.g.f. (exp(-x)/(1-x))*(1/(1-x)^9) = exp(-x)/(1-x)^10, equivalent to the given recurrence.
a(n) = A086764(n+9,9).
a(n) = (-1)^n*2F0(10,-n;;1). - Benedict W. J. Irwin, May 27 2016
Comments