cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176738 Expansion of 1 / ((1+x)*(1-x-4*x^2)). (5,4)-Padovan sequence.

Original entry on oeis.org

1, 0, 5, 4, 25, 40, 141, 300, 865, 2064, 5525, 13780, 35881, 91000, 234525, 598524, 1536625, 3930720, 10077221, 25800100, 66108985, 169309384, 433745325, 1110982860, 2845964161, 7289895600, 18673752245, 47833334644, 122528343625, 313861682200, 803975056701
Offset: 0

Views

Author

Wolfdieter Lang, Jul 14 2010

Keywords

Comments

See A000931 (Padovan), and the W. Lang link given there.

Crossrefs

Cf. A176737 ((4,3)-Padovan).

Programs

  • Mathematica
    LinearRecurrence[{0,5,4},{1,0,5},40] (* Harvey P. Dale, May 27 2016 *)
    f[n_] := Simplify[((-1)^(1 +n) + (2^(-1 -n)*((1 + Sqrt[17])^n*(-5 +3Sqrt[17]) + (1 -Sqrt[17])^n*(5 + 3Sqrt[17])))/Sqrt[17])/2]; Array[f, 31, 0] (* or *)
    CoefficientList[Series[1/(1 -5x^2 -4x^3), {x, 0, 30}], x] (* or *)
    RecurrenceTable[{a[n] == 5 a[n - 2] + 4 a[n - 3], a[0] == 1, a[1] == 0, a[2] == 5}, a, {n, 30}] (* Robert G. Wilson v, Dec 25 2017 *)
  • PARI
    Vec(1 / ((1 + x)*(1 - x - 4*x^2)) + O(x^40)) \\ Colin Barker, Dec 25 2017

Formula

O.g.f.: 1/((1-x-4*x^2)*(1+x)) = ((3-4*x)/(1-x-4*x^2) -1/(1+x))/2.
a(n) = (3*b(n) - 4*b(n-1) - (-1)^n)/2, n>=0, with b(n):=A006131(n) ((1,4)-Fibonacci), b(-1):=0.
From Colin Barker, Dec 25 2017: (Start)
a(n) = ((-1)^(1+n) + (2^(-1-n)*((1+sqrt(17))^n*(-5+3*sqrt(17)) + (1-sqrt(17))^n*(5+3*sqrt(17)))) / sqrt(17)) / 2.
a(n) = 5*a(n-2) + 4*a(n-3) for n>2.
(End)
Showing 1-1 of 1 results.