A176740 Inversion of e.g.f. formal power series. Partition array in Abramowitz-Stegun (A-St) order.
-1, -1, 3, -1, 10, -15, -1, 15, 10, -105, 105, -1, 21, 35, -210, -280, 1260, -945, -1, 28, 56, 35, -378, -1260, -280, 3150, 6300, -17325, 10395, -1, 36, 84, 126, -630, -2520, -1575, -2100, 6930, 34650, 15400, -51975, -138600, 270270, -135135, -1, 45, 120, 210, 126, -990, -4620, -6930, -4620, -5775
Offset: 0
Examples
-1; -1, 3; -1, 10, -15; -1, 15, 10, -105, 105; -1, 21, 35, -210, -280, 1260, -945; ... a(4,4): 4th partition of 4 has exponents (2,1,0,0) with m=3, and the derived exponents ehatm are (0,2,1,0,0,0,0) with one leading and 2 extra trailing zeros. (4+3)!/(2!^2*2!*3!^1*1!) = 105, hence a(4,4) = ((-1)^3)*105 = -105. fhat[4] = -1*g[1]^2*g[4] +10*g[1]*g[2]*g[3] - 15*g[2]^3 (n=3: 3 parts partitions of 6 for the g-monomials in A-St order).
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831-2.
- R. Aldrovandi, Special Matrices of Mathematical Physics, World Scientific, 2001, p. 175, eq. (13.84).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman &Hall/CRC, 2002, p. 437, eq. (11.43) with p. 428. eq. (11.29).
Links
- W. P. Johnson, Combinatorics of Higher Derivatives of Inverses, Amer. Math. Monthly 109 (3), (2002), 273-277
- Wolfdieter Lang, E.g.f. Lagrange inversion partition array.
Formula
See the fhat[n] formula explained above, and the W. Lang link for more details.
Comments