A268442 Triangle read by rows, the coefficients of the inverse Bell polynomials.
1, 0, 1, 0, -1, 1, 0, 3, -1, -3, 1, 0, -15, 10, -1, 15, -4, -6, 1, 0, 105, -105, 10, 15, -1, -105, 60, -5, 45, -10, -10, 1, 0, -945, 1260, -280, -210, 35, 21, -1, 945, -840, 70, 105, -6, -420, 210, -15, 105, -20, -15, 1
Offset: 0
Examples
[[1]], [[0], [1]], [[0], [-1], [1]], [[0], [3, -1], [-3], [1]], [[0], [-15, 10, -1], [15, -4], [-6], [1]], [[0], [105, -105, 10, 15, -1], [-105, 60, -5], [45, -10], [-10], [1]] Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of first kind (A048994). The column 1 of sublists is A176740 (missing the leading 1) and A134685 in different order.
Links
- Peter Luschny, First 21 rows, flattened
- Peter Luschny, The Bell transform
- Peter Luschny, SageMath implementation
Programs
-
Mathematica
A268442Matrix[dim_] := Module[ {v, r, A}, v = Table[Subscript[x,j],{j,1,dim}]; r = Table[Subscript[x,j]->1,{j,1,n}]; A = Table[Table[BellY[n,k,v], {k,0,dim}], {n,0,dim}]; Table[Table[MonomialList[Inverse[A][[n,k]]/. r[[1]], v, Lexicographic] /. r, {k,1,n}] // Flatten, {n,1,dim}]]; A268442Matrix[7] // Flatten
-
Sage
# see link
Comments