cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A269941 Triangle read by rows, the coefficients of the partial P-polynomials.

Original entry on oeis.org

1, 0, -1, 0, -1, 1, 0, -1, 2, -1, 0, -1, 1, 2, -3, 1, 0, -1, 2, 2, -3, -3, 4, -1, 0, -1, 1, 2, 2, -1, -6, -3, 6, 4, -5, 1, 0, -1, 2, 2, 2, -3, -3, -6, -3, 4, 12, 4, -10, -5, 6, -1, 0, -1, 1, 2, 2, 2, -3, -3, -6, -6, -3, 1, 12, 6, 12, 4, -10, -20, -5, 15, 6, -7, 1
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Comments

For the definition of the partial P-polynomials see the link 'P-transform'. The triangle of coefficients of the inverse partial P-polynomials is A269942.

Examples

			[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-1], [2], [-1]],
[[0], [-1], [1, 2], [-3], [1]],
[[0], [-1], [2, 2], [-3, -3], [4], [-1]],
[[0], [-1], [1, 2, 2], [-1, -6, -3], [6, 4], [-5], [1]],
[[0], [-1], [2, 2, 2], [-3, -3, -6, -3], [4, 12, 4], [-10, -5], [6], [-1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805.
		

Crossrefs

Programs

  • Maple
    PTrans := proc(n, f, nrm:=NULL) local q, p, r, R;
    if n = 0 then return [1] fi; R := [seq(0,j=0..n)];
    for q in combinat:-partition(n) do
       p := [op(ListTools:-Reverse(q)),0]; r := p[1]+1;
       mul(binomial(p[j], p[j+1])*f(j)^p[j], j=1..nops(q));
       R[r] := R[r]-(-1)^r*% od;
    if nrm = NULL then R else [seq(nrm(n,k)*R[k+1],k=0..n)] fi end:
    A269941_row := n -> seq(coeffs(p), p in PTrans(n, n -> x[n])):
    seq(lprint(A269941_row(n)), n=0..8);
  • Sage
    def PtransMatrix(dim, f, norm = None, inverse = False, reduced = False):
        i = 1; F = [1]
        if reduced:
            while i <= dim: F.append(f(i)); i += 1
        else:
            while i <= dim: F.append(F[i-1]*f(i)); i += 1
        C = [[0 for k in range(m+1)] for m in range(dim)]
        C[0][0] = 1
        if inverse:
            for m in (1..dim-1):
                C[m][m] = -C[m-1][m-1]/F[1]
                for k in range(m-1, 0, -1):
                    C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1]
                              for i in (2..m-k+1)))/F[1]
        else:
            for m in (1..dim-1):
                C[m][m] = -C[m-1][m-1]*F[1]
                for k in range(m-1, 0, -1):
                    C[m][k] = -sum(F[i]*C[m-i][k-1] for i in (1..m-k+1))
        if norm == None: return C
        for m in (1..dim-1):
            for k in (1..m): C[m][k] *= norm(m,k)
        return C
    def PMultiCoefficients(dim, norm = None, inverse = False):
        def coefficient(p):
            if p <= 1: return [p]
            return SR(p).fraction(ZZ).numerator().coefficients()
        f = lambda n: var('x'+str(n))
        P = PtransMatrix(dim, f, norm, inverse)
        return [[coefficient(p) for p in L] for L in P]
    print(flatten(PMultiCoefficients(9)))

A268441 Triangle read by rows, the coefficients of the Bell polynomials.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 3, 4, 6, 1, 0, 1, 10, 5, 15, 10, 10, 1, 0, 1, 10, 15, 6, 15, 60, 15, 45, 20, 15, 1, 0, 1, 35, 21, 7, 105, 70, 105, 21, 105, 210, 35, 105, 35, 21, 1, 0, 1, 35, 56, 28, 8, 280, 210, 280, 168, 28, 105, 840, 280, 420, 56, 420, 560, 70, 210, 56, 28, 1
Offset: 0

Views

Author

Peter Luschny, Feb 07 2016

Keywords

Comments

The triangle of coefficients of the inverse Bell polynomials is A268442.

Examples

			[[1]]
[[0], [1]]
[[0], [1],  [1]]
[[0], [1],  [3],         [1]]
[[0], [1],  [3, 4],      [6],          [1]]
[[0], [1],  [10, 5],     [15, 10],     [10],     [1]]
[[0], [1],  [10, 15, 6], [15, 60, 15], [45, 20], [15], [1]]
Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of second kind (A048993).
		

References

  • L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, 1974.

Crossrefs

Programs

  • Mathematica
    BellCoeffs[n_, k_] :=  Module[{v, r},
    v = Table[Subscript[x,j], {j,1,n}]; (* list of variables *)
    r = Table[Subscript[x,j]->1, {j,1,n}]; (* evaluated at 1 *)
    MonomialList[BellY[n,k,v], v, NegativeLexicographic] /. r];
    A268441Row[n_] := Table[BellCoeffs[n,k], {k,0,n}] // Flatten;
    Do[Print[A268441Row[n]], {n,0,8}] (* Peter Luschny, Feb 08 2016 *)
    max = 9; egf = Exp[Sum[x[k]*t^k/k!, {k, 1, max}]]; P = Table[n!* SeriesCoefficient[egf, {t, 0, n}], {n, 0, max-1}]; row[n_] := (s = Split[ Sort[{ Exponent[# /. x[] -> x, x], #}& /@ (List @@ Expand[P[[n]]])], #1[[1]] == #2[[1]]&]; Join[{0}, #[[All, 2]]& /@ (s /. x[] -> 1) // Flatten]); row[1] = {1}; Array[row, max] // Flatten (* Jean-François Alcover, Feb 08 2016 *)
  • Sage
    import itertools
    def A268441_row(n):
        c = [bell_polynomial(n,k).coefficients() for k in (0..n)]
        if n>0: c[0] = [0]
        return list(itertools.chain(*c))
    for n in range(9): print(A268441_row(n))

Formula

E.g.f.: exp( Sum_{k>=1} x_{k}*t^k/k! ), monomials in negative lexicographic order.

A269942 Triangle read by rows, the coefficients of the inverse partial P-polynomials.

Original entry on oeis.org

1, 0, -1, 0, -1, 1, 0, -2, 1, 2, -1, 0, -5, 5, -1, 5, -2, -3, 1, 0, -14, 21, -3, -6, 1, 14, -12, 2, -9, 3, 4, -1, 0, -42, 84, -28, -28, 7, 7, -1, 42, -56, 7, 14, -2, -28, 21, -3, 14, -4, -5, 1
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Comments

The triangle of coefficients of the partial P-polynomials is A269941. For the definition of the inverse partial P-polynomials see the link 'P-transform'.

Examples

			[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-2, 1], [2], [-1]],
[[0], [-5, 5, -1], [5, -2], [-3], [1]],
[[0], [-14, 21, -3, -6, 1], [14, -12, 2], [-9, 3], [4], [-1]],
[[0], [-42,84,-28,-28,7,7,-1],[42,-56,7,14,-2],[-28,21,-3],[14,-4],[-5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.
		

Crossrefs

Programs

  • Sage
    # For function PMultiCoefficients see A269941.
    PMultiCoefficients(7, inverse = True)
Showing 1-3 of 3 results.