A269939
Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 3;
0, 1, 10, 15;
0, 1, 25, 105, 105;
0, 1, 56, 490, 1260, 945;
0, 1, 119, 1918, 9450, 17325, 10395;
0, 1, 246, 6825, 56980, 190575, 270270, 135135;
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- Marko Riedel, Math Stackexchange, Upper Stirling numbers and Ward numbers.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 1, 12.
Alternating row sums are signed factorials
A133942.
-
# first version
A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
seq(seq(A269939(n,k), k=0..n), n=0..8);
# Alternatively:
T := proc(n,k) option remember;
`if`(k=0 and n=0, 1,
`if`(k<=0 or k>n, 0,
k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
for n from 0 to 6 do seq(T(n,k),k=0..n) od;
# simple, third version
T := (n,k)-> (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
-
Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
-
T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
-
T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
for n in (0..6): print([T(n,k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
A269945
Triangle read by rows. Stirling set numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + k^2*T(n-1, k), for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 21, 14, 1, 0, 1, 85, 147, 30, 1, 0, 1, 341, 1408, 627, 55, 1, 0, 1, 1365, 13013, 11440, 2002, 91, 1, 0, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 0, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 1, 1]
[3] [0, 1, 5, 1]
[4] [0, 1, 21, 14, 1]
[5] [0, 1, 85, 147, 30, 1]
[6] [0, 1, 341, 1408, 627, 55, 1]
-
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + k^2*T(n-1, k))) end:
for n from 0 to 9 do seq(T(n, k), k=0..n) od;
# Alternatively with the P-transform (cf. A269941):
A269945_row := n -> PTrans(n, n->`if`(n=1, 1, 1/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269945_row(n)), n=0..8);
# Using the exponential generating function:
egf := 1 + t^2*(cosh(2*sinh(t*x/2)/t));
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, 2*(n-k+1)), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Feb 29 2024
-
T[n_, n_] = 1; T[n_ /; n >= 0, k_] /; 0 <= k < n := T[n, k] = T[n - 1, k - 1] + k^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Nov 27 2017 *)
-
# uses[PtransMatrix from A269941]
stirset2 = lambda n: 1 if n == 1 else 1/(n*(4*n-2))
norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
M = PtransMatrix(7, stirset2, norm)
for m in M: print(m)
A268437
Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](1/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 4, 6, 0, 30, 120, 90, 0, 336, 2800, 5040, 2520, 0, 5040, 80640, 264600, 302400, 113400, 0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400, 0, 2162160, 118198080, 983782800, 2986663680, 4162158000, 2724321600, 681080400
Offset: 0
[1],
[0, 1],
[0, 4, 6],
[0, 30, 120, 90],
[0, 336, 2800, 5040, 2520],
[0, 5040, 80640, 264600, 302400, 113400],
[0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400].
-
A268437 := proc(n,k) local F,T;
F := proc(n,k) option remember;
`if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
F(n-1,k)*(n+k))) end;
T := proc(n,k) option remember;
`if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
(4*n-2)*n*(k*T(n-1,k)+(n+k-1)*T(n-1,k-1)))) end;
T(n,k)/F(n,k) end:
for n from 0 to 6 do seq(A268437(n,k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268437_row := n -> PTrans(n, n->1/(n+1),(n,k)->(-1)^k*(2*n)!):
seq(print(A268437_row(n)),n=0..8);
-
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] StirlingS2[n+m, m], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
A268437 = lambda n, k: (factorial(2*n)/falling_factorial(n+k, n))*sum((-1)^(m+k)* binomial(n+k, n+m)*stirling_number2(n+m, m) for m in (0..k))
for n in (0..7): print([A268437(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k* factorial(2*n))
A268438
Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](n/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 6, 0, 180, 240, 90, 0, 8064, 14560, 10080, 2520, 0, 604800, 1330560, 1285200, 604800, 113400, 0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400, 0, 10897286400, 30858347520, 43770767040, 36970053120, 18918900000, 5448643200, 681080400
Offset: 0
Triangle starts:
[1],
[0, 1],
[0, 8, 6],
[0, 180, 240, 90],
[0, 8064, 14560, 10080, 2520],
[0, 604800, 1330560, 1285200, 604800, 113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
-
A268438 := proc(n,k) local F,T;
F := proc(n,k) option remember;
`if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
F(n-1,k)*(n+k))) end;
T := proc(n, k) option remember;
`if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
(4*n-2)*n*(n+k-1)*(T(n-1,k)+T(n-1,k-1)))) end:
T(n,k)/F(n,k) end:
for n from 0 to 6 do seq(A268438(n,k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268438_row := n -> PTrans(n, n->n/(n+1),(n,k)->(-1)^k*(2*n)!):
seq(lprint(A268438_row(n)), n=0..8);
-
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
A268438 = lambda n,k: (factorial(2*n)/falling_factorial(n+k,n))*sum((-1)^(m+k)* binomial(n+k,n+m)*stirling_number1(n+m,m) for m in (0..k))
for n in (0..7): print([A268438(n,m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n))
A269944
Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 1, 1]
[0, 4, 5, 1]
[0, 36, 49, 14, 1]
[0, 576, 820, 273, 30, 1]
[0, 14400, 21076, 7645, 1023, 55, 1]
-
T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
# From Peter Luschny, Feb 29 2024: (Start)
# Computed as the coefficients of polynomials:
P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
# Alternative, using the exponential generating function:
egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # (End)
# Alternative, row polynomials:
rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..6); # Peter Luschny, Aug 03 2024
-
T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Jul 25 2019 *)
-
stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
M = PtransMatrix(7, stircycle2, norm)
for m in M: print(m)
A269940
Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0
Triangle T(n,k) starts:
[1]
[0, 1]
[0, 2, 3]
[0, 6, 20, 15]
[0, 24, 130, 210, 105]
[0, 120, 924, 2380, 2520, 945]
[0, 720, 7308, 26432, 44100, 34650, 10395]
[0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Anthony Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311, section 4.4.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Nico M. Temme, Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters, Integral Transforms and Special Functions, 2021.
- Nico M. Temme and Ed J. M. Veling, Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z, arXiv:2202.12857 [math.CA], 2022.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
-
T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k):
seq(print(seq(T(n, k), k=0..n)), n=0..6);
# Alternatively:
T := proc(n, k) option remember;
`if`(k=0, k^n,
`if`(k<=0 or k>n, 0,
(n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
-
T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
-
T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([T(n, k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
Name corrected after notice from Ed Veling by
Peter Luschny, Jun 14 2022
A268434
Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 10, 10, 1]
[0, 100, 140, 28, 1]
[0, 1700, 2900, 840, 60, 1]
[0, 44200, 85800, 31460, 3300, 110, 1]
[0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1]
-
T := proc(n,k) option remember;
if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
seq(seq(T(n,k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
(n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
-
T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
#cached_function
def T(n, k):
if n==k: return 1
if k<0 or k>n: return 0
return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
for n in range(8): print([T(n, k) for k in (0..n)])
# Alternatively with the function PtransMatrix (cf. A269941):
PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))
A268439
Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling2(n+m,m), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 15, 60, 15, 0, 56, 700, 840, 105, 0, 210, 6720, 22050, 12600, 945, 0, 792, 58905, 421960, 623700, 207900, 10395, 0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135, 0, 11440, 4012008, 100180080, 551450900, 916515600, 491891400, 75675600, 2027025
Offset: 0
[1]
[0, 1]
[0, 4, 3]
[0, 15, 60, 15]
[0, 56, 700, 840, 105]
[0, 210, 6720, 22050, 12600, 945]
[0, 792, 58905, 421960, 623700, 207900, 10395]
[0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135]
-
# The function PTrans is defined in A269941.
A268439_row := n -> PTrans(n, n->1/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
seq(print(A268439_row(n)), n=0..8);
-
A268439 = lambda n, k: binomial(2*n, n+k)*sum((-1)^(m+k)*binomial(n+k, n+m)* stirling_number2(n+m, m) for m in (0..k))
for n in (0..7): print([A268439(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
# Alternatively
PtransMatrix(8, lambda n: 1/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))
A268440
Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling1(n+m,m), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 3, 0, 90, 120, 15, 0, 1344, 3640, 1680, 105, 0, 25200, 110880, 107100, 25200, 945, 0, 570240, 3617460, 5815040, 2910600, 415800, 10395, 0, 15135120, 128576448, 303963660, 256736480, 78828750, 7567560, 135135
Offset: 0
[1]
[0, 1]
[0, 8, 3]
[0, 90, 120, 15]
[0, 1344, 3640, 1680, 105]
[0, 25200, 110880, 107100, 25200, 945]
[0, 570240, 3617460, 5815040, 2910600, 415800, 10395]
-
# The function PTrans is defined in A269941.
A268440_row := n -> PTrans(n, n->n/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
seq(print(A268440_row(n)), n=0..8);
-
A268440 = lambda n, k: binomial(2*n,n+k)*sum((-1)^(m+k)*binomial(n+k,n+m)* stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([A268440(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
# Alternatively
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))
A357078
Triangle read by rows. The partition transform of A355488, which are the alternating row sums of the number of permutations of [n] with k components (A059438).
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 8, 4, 0, 1, 0, 48, 16, 6, 0, 1, 0, 328, 100, 24, 8, 0, 1, 0, 2560, 688, 156, 32, 10, 0, 1, 0, 22368, 5376, 1080, 216, 40, 12, 0, 1, 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1, 0, 2291456, 450240, 73440, 11808, 1960, 348, 56, 16, 0, 1
Offset: 0
Triangle T(n, k) starts: [Row sums]
[0] 1; [1]
[1] 0, 1; [1]
[2] 0, 0, 1; [1]
[3] 0, 2, 0, 1; [3]
[4] 0, 8, 4, 0, 1; [13]
[5] 0, 48, 16, 6, 0, 1; [71]
[6] 0, 328, 100, 24, 8, 0, 1; [461]
[7] 0, 2560, 688, 156, 32, 10, 0, 1; [3447]
[8] 0, 22368, 5376, 1080, 216, 40, 12, 0, 1; [29093]
[9] 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1; [273343]
-
from functools import cache
def PartTrans(dim, f):
X = var(['x' + str(i) for i in range(dim + 1)])
@cache
def PCoeffs(n: int, k: int):
R = PolynomialRing(ZZ, X[1: n - k + 2], n - k + 1, order='lex')
if k == 0: return R(k^n)
return R(sum(PCoeffs(n - j, k - 1) * f(j)
for j in range(1, n - k + 2)))
return [[PCoeffs(n, k) for k in range(n + 1)] for n in range(dim)]
def A357078_triangle(dim):
A = ZZ[['t']]; g = A([0] + [factorial(n) for n in range(1, 30)]).O(dim+2)
return PartTrans(dim, lambda n: list(g / (1 + 2 * g))[n])
A357078_triangle(9)
Showing 1-10 of 16 results.
Comments