cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A269939 Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 26 2016

Keywords

Comments

We propose to call this sequence the 'Ward set numbers' and sequence A269940 the 'Ward cycle numbers'. - Peter Luschny, Nov 25 2022

Examples

			Triangle starts:
  1;
  0, 1;
  0, 1,   3;
  0, 1,  10,   15;
  0, 1,  25,  105,   105;
  0, 1,  56,  490,  1260,    945;
  0, 1, 119, 1918,  9450,  17325,  10395;
  0, 1, 246, 6825, 56980, 190575, 270270, 135135;
		

Crossrefs

Variants: A134991 (main entry for this triangle), A181996.
Row sums are A000311.
Alternating row sums are signed factorials A133942.
Cf. A269940 (Stirling1 counterpart), A268437.

Programs

  • Maple
    # first version
    A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
    seq(seq(A269939(n,k), k=0..n), n=0..8);
    # Alternatively:
    T := proc(n,k) option remember;
        `if`(k=0 and n=0, 1,
        `if`(k<=0 or k>n, 0,
        k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
    for n from 0 to 6 do seq(T(n,k),k=0..n) od;
    # simple, third version
    T := (n,k)->  (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
  • Mathematica
    Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
  • PARI
    T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
  • Sage
    T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
    for n in (0..6): print([T(n,k) for k in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
    

Formula

T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](1/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268437(n,k)*FF(n+k,n)/(2*n)!.
T(n,k) = (n+k)! [z^{n+k}] (exp(z)-z-1)^k/k!. - Marko Riedel, Apr 14 2016
From Fabián Pereyra, Jan 12 2022: (Start)
T(n,k) = k*T(n-1,k) + (n+k-1)*T(n-1,k-1) for n > 0, T(0,0) = 1, T(n,0) = 0 for n > 0. (See the second Maple program.)
E.g.f.: A(x,t) = 1/((1+t)*(1 + W(-t/(1+t)*exp((x-t)/(1+t))))), where W(x) is the Lambert W-function.
T(n,k) = Sum_{j=0..k} E2(n,j)*binomial(n-j,k-j), where E2(n,k) are the second-order Eulerian numbers A340556.
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A112486(n,j)*binomial(j,k). (End)

A269945 Triangle read by rows. Stirling set numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + k^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 1, 0, 1, 21, 14, 1, 0, 1, 85, 147, 30, 1, 0, 1, 341, 1408, 627, 55, 1, 0, 1, 1365, 13013, 11440, 2002, 91, 1, 0, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 0, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers T(2*n, 2*k) (cf. A036969).
The analog for the Stirling cycle numbers is A269944.

Examples

			Triangle starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1,   1]
  [3] [0, 1,   5,    1]
  [4] [0, 1,  21,   14,   1]
  [5] [0, 1,  85,  147,  30,  1]
  [6] [0, 1, 341, 1408, 627, 55, 1]
		

Crossrefs

Columns k=0..5 give A000007, A000012, A002450(n-1), A002451(n-3), A383838(n-4), A383840(n-5).
Variants are: A008957, A036969.
Cf. A007318 (order 0), A048993 (order 1), A269948 (order 3).
Cf. A000330 (subdiagonal), A002450 (column 2), A135920 (row sums), A269941, A269944 (Stirling cycle), A298851 (central terms).

Programs

  • Maple
    T := proc(n, k) option remember;
        `if`(n=k, 1,
        `if`(k<0 or k>n, 0,
         T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 0 to 9 do seq(T(n, k), k=0..n) od;
    # Alternatively with the P-transform (cf. A269941):
    A269945_row := n -> PTrans(n, n->`if`(n=1, 1, 1/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269945_row(n)), n=0..8);
    # Using the exponential generating function:
    egf := 1 + t^2*(cosh(2*sinh(t*x/2)/t));
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, 2*(n-k+1)), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # Peter Luschny, Feb 29 2024
  • Mathematica
    T[n_, n_] = 1; T[n_ /; n >= 0, k_] /; 0 <= k < n := T[n, k] = T[n - 1, k - 1] + k^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Nov 27 2017 *)
  • Sage
    # uses[PtransMatrix from A269941]
    stirset2 = lambda n: 1 if n == 1 else 1/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stirset2, norm)
    for m in M: print(m)

Formula

T(n, k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = 1/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n, 2) = (4^(n - 1) - 1)/3 for n >= 2 (cf. A002450).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n, k) = (1/(2*k)!)*Sum_{j=0..2*k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n).
T(n, k) = Sum_{j=2*k..2*n} (-k)^(2*n - j)*binomial(2*n, j)*Stirling2(j, 2*k).
T(n, k) = Sum_{j=0..2*n} (-1)^(j - k)*Stirling2(2*n - j, k)*Stirling2(j, k). (End)
T(n, k) = (2*n)! [t^(2*(n-k+1))] [x^(2*n)] (1 + t^2*(cosh(2*sinh(t*x/2)/t))). - Peter Luschny, Feb 29 2024

A268437 Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](1/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 4, 6, 0, 30, 120, 90, 0, 336, 2800, 5040, 2520, 0, 5040, 80640, 264600, 302400, 113400, 0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400, 0, 2162160, 118198080, 983782800, 2986663680, 4162158000, 2724321600, 681080400
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

The P-transform is defined in the link. Compare also the Sage and Maple implementations below.

Examples

			[1],
[0, 1],
[0, 4, 6],
[0, 30, 120, 90],
[0, 336, 2800, 5040, 2520],
[0, 5040, 80640, 264600, 302400, 113400],
[0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400].
		

Crossrefs

Programs

  • Maple
    A268437 := proc(n,k) local F,T;
      F := proc(n,k) option remember;
      `if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
      F(n-1,k)*(n+k))) end;
      T := proc(n,k) option remember;
      `if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
      (4*n-2)*n*(k*T(n-1,k)+(n+k-1)*T(n-1,k-1)))) end;
    T(n,k)/F(n,k) end:
    for n from 0 to 6 do seq(A268437(n,k), k=0..n) od;
    # Alternatively, with the function PTrans defined in A269941:
    A268437_row := n -> PTrans(n, n->1/(n+1),(n,k)->(-1)^k*(2*n)!):
    seq(print(A268437_row(n)),n=0..8);
  • Mathematica
    T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] StirlingS2[n+m, m], {m, 0, k}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
  • Sage
    A268437 = lambda n, k: (factorial(2*n)/falling_factorial(n+k, n))*sum((-1)^(m+k)* binomial(n+k, n+m)*stirling_number2(n+m, m) for m in (0..k))
    for n in (0..7): print([A268437(n, m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k* factorial(2*n))

Formula

T(n,k) = ((2*n)!/FF(n+k,n))*Sum_{m=0..k}(-1)^(m+k)*C(n+k,n+m)*Stirling2(n+m,m) where FF denotes the falling factorial function.
T(n,k) = ((2*n)!/FF(n+k,n))*A269939(n,k).
T(n,1) = (2*n)!/(n+1)! = A001761(n) for n>=1.
T(n,n) = (2*n)!/2^n = A000680(n) for n>=0.

A268438 Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](n/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 8, 6, 0, 180, 240, 90, 0, 8064, 14560, 10080, 2520, 0, 604800, 1330560, 1285200, 604800, 113400, 0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400, 0, 10897286400, 30858347520, 43770767040, 36970053120, 18918900000, 5448643200, 681080400
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

The P-transform is defined in the link. Compare also the Sage and Maple implementations below.

Examples

			Triangle starts:
[1],
[0, 1],
[0, 8,        6],
[0, 180,      240,       90],
[0, 8064,     14560,     10080,     2520],
[0, 604800,   1330560,   1285200,   604800,    113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
		

Crossrefs

Programs

  • Maple
    A268438 := proc(n,k) local F,T;
      F := proc(n,k) option remember;
      `if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
      F(n-1,k)*(n+k))) end;
      T := proc(n, k) option remember;
      `if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
      (4*n-2)*n*(n+k-1)*(T(n-1,k)+T(n-1,k-1)))) end:
    T(n,k)/F(n,k) end:
    for n from 0 to 6 do seq(A268438(n,k), k=0..n) od;
    # Alternatively, with the function PTrans defined in A269941:
    A268438_row := n -> PTrans(n, n->n/(n+1),(n,k)->(-1)^k*(2*n)!):
    seq(lprint(A268438_row(n)), n=0..8);
  • Mathematica
    T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
  • Sage
    A268438 = lambda n,k: (factorial(2*n)/falling_factorial(n+k,n))*sum((-1)^(m+k)* binomial(n+k,n+m)*stirling_number1(n+m,m) for m in (0..k))
    for n in (0..7): print([A268438(n,m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n))

Formula

T(n,k) = ((2*n)!/FF(n+k,n))*Sum_{m=0..k}(-1)^(m+k)*C(n+k,n+m)*Stirling1(n+m,m) where FF denotes the falling factorial function.
T(n,k) = ((2*n)!/FF(n+k,n))*A269940(n,k).
T(n,1) = (2*n)!/(n+1) = A060593(n) for n>=1.
T(n,n) = (2*n)!/2^n = A000680(n) for n>=0.

A269944 Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2016

Keywords

Comments

Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
The analog for the Stirling set numbers is A269945.

Examples

			Triangle starts:
  [1]
  [0,     1]
  [0,     1,     1]
  [0,     4,     5,    1]
  [0,    36,    49,   14,    1]
  [0,   576,   820,  273,   30,  1]
  [0, 14400, 21076, 7645, 1023, 55, 1]
		

Crossrefs

Variants: A204579 (signed, row 0 missing), A008955.
Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).

Programs

  • Maple
    T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
    # From Peter Luschny, Feb 29 2024: (Start)
    # Computed as the coefficients of polynomials:
    P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
    T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
    # Alternative, using the exponential generating function:
    egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
    ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
    Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
    seq(print(Trow(n)), n = 0..9);  # (End)
    # Alternative, row polynomials:
    rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
    row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
    seq(print(row(n)), n = 0..6);  # Peter Luschny, Aug 03 2024
  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
    (* Jean-François Alcover, Jul 25 2019 *)
  • Sage
    stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
    norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
    M = PtransMatrix(7, stircycle2, norm)
    for m in M: print(m)

Formula

T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - Peter Luschny, Aug 03 2024

A269940 Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 27 2016

Keywords

Comments

We propose to call this sequence the 'Ward cycle numbers' and sequence A269939 the 'Ward set numbers'. - Peter Luschny, Nov 25 2022

Examples

			Triangle T(n,k) starts:
  [1]
  [0,   1]
  [0,   2,      3]
  [0,   6,     20,     15]
  [0,  24,    130,    210,    105]
  [0,  120,   924,   2380,   2520,    945]
  [0,  720,  7308,  26432,  44100,  34650,  10395]
  [0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
		

Crossrefs

Variants: A111999, A259456.
Cf. A269939 (Stirling2 counterpart), A268438, A032188 (row sums).

Programs

  • Maple
    T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k):
    seq(print(seq(T(n, k), k=0..n)), n=0..6);
    # Alternatively:
    T := proc(n, k) option remember;
        `if`(k=0, k^n,
        `if`(k<=0 or k>n, 0,
        (n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
    for n from 0 to 6 do seq(T(n, k), k=0..n) od;
  • Mathematica
    T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
  • Sage
    T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
    for n in (0..7): print([T(n, k) for k in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))

Formula

T(n,k) = (-1)^k*FF(n+k,n)*P[n,k](n/(n+1)) where P is the P-transform and FF the falling factorial function. For the definition of the P-transform see the link.
T(n,k) = A268438(n,k)*FF(n+k,n)/(2*n)!.

Extensions

Name corrected after notice from Ed Veling by Peter Luschny, Jun 14 2022

A268434 Triangle read by rows, Lah numbers of order 2, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 10, 10, 1, 0, 100, 140, 28, 1, 0, 1700, 2900, 840, 60, 1, 0, 44200, 85800, 31460, 3300, 110, 1, 0, 1635400, 3476200, 1501500, 203060, 10010, 182, 1, 0, 81770000, 185874000, 90563200, 14700400, 943800, 25480, 280, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Comments

0

Examples

			[1]
[0,        1]
[0,        2,         1]
[0,       10,        10,        1]
[0,      100,       140,       28,        1]
[0,     1700,      2900,      840,       60,      1]
[0,    44200,     85800,    31460,     3300,    110,     1]
[0,  1635400,   3476200,  1501500,   203060,  10010,   182,   1]
		

Crossrefs

Cf. A038207 (order 0), A111596 (order 1), A269946 (order 3).

Programs

  • Maple
    T := proc(n,k) option remember;
    if n=k then return 1 fi; if k<0 or k>n then return 0 fi;
    T(n-1,k-1)+((n-1)^2+k^2)*T(n-1,k) end:
    seq(seq(T(n,k), k=0..n), n=0..8);
    # Alternatively with the P-transform (cf. A269941):
    A268434_row := n -> PTrans(n, n->`if`(n=1,1, ((n-1)^2+1)/(n*(4*n-2))),
    (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A268434_row(n)), n=0..8);
  • Mathematica
    T[n_, n_] = 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^2 + k^2)*T[n-1, k]; T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
  • Sage
    #cached_function
    def T(n, k):
        if n==k: return 1
        if k<0 or k>n: return 0
        return T(n-1, k-1)+((n-1)^2+k^2)*T(n-1, k)
    for n in range(8): print([T(n, k) for k in (0..n)])
    # Alternatively with the function PtransMatrix (cf. A269941):
    PtransMatrix(8, lambda n: 1 if n==1 else ((n-1)^2+1)/(n*(4*n-2)), lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k))

Formula

T(n,k) = (-1)^k*((2*n)!/(2*k)!)*P[n,k](s(n)) where P is the P-transform and s(n) = ((n-1)^2+1)/(n*(4*n-2)). The P-transform is defined in the link. Compare also the Sage and Maple implementations below.
T(n,k) = Sum_{j=k..n} A269944(n,j)*A269945(j,k).
T(n,1) = Product_{k=1..n} (k-1)^2+1 for n>=1 (cf. A101686).
T(n,n-1) = (n-1)*n*(2*n-1)/3 for n>=1 (cf. A006331).
Row sums: A269938.

A268439 Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling2(n+m,m), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 4, 3, 0, 15, 60, 15, 0, 56, 700, 840, 105, 0, 210, 6720, 22050, 12600, 945, 0, 792, 58905, 421960, 623700, 207900, 10395, 0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135, 0, 11440, 4012008, 100180080, 551450900, 916515600, 491891400, 75675600, 2027025
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Examples

			[1]
[0, 1]
[0, 4, 3]
[0, 15, 60, 15]
[0, 56, 700, 840, 105]
[0, 210, 6720, 22050, 12600, 945]
[0, 792, 58905, 421960, 623700, 207900, 10395]
[0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135]
		

Crossrefs

Programs

  • Maple
    # The function PTrans is defined in A269941.
    A268439_row := n -> PTrans(n, n->1/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
    seq(print(A268439_row(n)), n=0..8);
  • Sage
    A268439 = lambda n, k: binomial(2*n, n+k)*sum((-1)^(m+k)*binomial(n+k, n+m)* stirling_number2(n+m, m) for m in (0..k))
    for n in (0..7): print([A268439(n, m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    # Alternatively
    PtransMatrix(8, lambda n: 1/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))

Formula

T(n,k) = ((-1)^k*(2*n)!/(k!*(n-k)!))*P[n,k](1/(n+1)) where P is the P-transform. The P-transform is defined in the link.
T(n,k) = A269939(n,k)*binomial(2*n,n+k).
T(n,k) = A268437(n,k)/(k!*(n-k)!).
T(n,1) = binomial(2*n,n-1) = A001791(n) for n>=1.
T(n,n) = (2*n-1)!! = A001147(n) for n>=0.

A268440 Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling1(n+m,m), for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 8, 3, 0, 90, 120, 15, 0, 1344, 3640, 1680, 105, 0, 25200, 110880, 107100, 25200, 945, 0, 570240, 3617460, 5815040, 2910600, 415800, 10395, 0, 15135120, 128576448, 303963660, 256736480, 78828750, 7567560, 135135
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Examples

			[1]
[0, 1]
[0, 8, 3]
[0, 90, 120, 15]
[0, 1344, 3640, 1680, 105]
[0, 25200, 110880, 107100, 25200, 945]
[0, 570240, 3617460, 5815040, 2910600, 415800, 10395]
		

Crossrefs

Programs

  • Maple
    # The function PTrans is defined in A269941.
    A268440_row := n -> PTrans(n, n->n/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
    seq(print(A268440_row(n)), n=0..8);
  • Sage
    A268440 = lambda n, k: binomial(2*n,n+k)*sum((-1)^(m+k)*binomial(n+k,n+m)* stirling_number1(n+m, m) for m in (0..k))
    for n in (0..7): print([A268440(n, m) for m in (0..n)])
    
  • Sage
    # uses[PtransMatrix from A269941]
    # Alternatively
    PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))

Formula

T(n,k) = ((-1)^k*(2*n)!/(k!*(n-k)!))*P[n,k](n/(n+1)) where P is the P-transform. The P-transform is defined in the link.
T(n,k) = A269940*binomial(2*n,n+k).
T(n,k) = A268438(n,k)/(k!*(n-k)!).
T(n,1) = n*(2*n)!/(n+1)! for n>=1 (cf. A092956).
T(n,n) = (2*n-1)!! = A001147(n) for n>=0.

A357078 Triangle read by rows. The partition transform of A355488, which are the alternating row sums of the number of permutations of [n] with k components (A059438).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 8, 4, 0, 1, 0, 48, 16, 6, 0, 1, 0, 328, 100, 24, 8, 0, 1, 0, 2560, 688, 156, 32, 10, 0, 1, 0, 22368, 5376, 1080, 216, 40, 12, 0, 1, 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1, 0, 2291456, 450240, 73440, 11808, 1960, 348, 56, 16, 0, 1
Offset: 0

Views

Author

Peter Luschny, Sep 10 2022

Keywords

Comments

The partition transform (also called De Moivre polynomials by Cormac O'Sullivan) is defined in the program section as a Sage script.
The triangle represents a refinement of the number of irreducible permutations, A003319. Together with the refinement of the number of reducible permutations A356265 the triangle sums to the refinement of the factorial numbers given in A357079.

Examples

			Triangle T(n, k) starts:                         [Row sums]
[0] 1;                                               [1]
[1] 0,      1;                                       [1]
[2] 0,      0,     1;                                [1]
[3] 0,      2,     0,    1;                          [3]
[4] 0,      8,     4,    0,    1;                    [13]
[5] 0,     48,    16,    6,    0,   1;               [71]
[6] 0,    328,   100,   24,    8,   0,  1;           [461]
[7] 0,   2560,   688,  156,   32,  10,  0,  1;       [3447]
[8] 0,  22368,  5376, 1080,  216,  40, 12,  0, 1;    [29093]
[9] 0, 216224, 46816, 8456, 1504, 280, 48, 14, 0, 1; [273343]
		

Crossrefs

Programs

  • SageMath
    from functools import cache
    def PartTrans(dim, f):
        X = var(['x' + str(i) for i in range(dim + 1)])
        @cache
        def PCoeffs(n: int, k: int):
            R = PolynomialRing(ZZ, X[1: n - k + 2], n - k + 1, order='lex')
            if k == 0: return R(k^n)
            return R(sum(PCoeffs(n - j, k - 1) * f(j)
                         for j in range(1, n - k + 2)))
        return [[PCoeffs(n, k) for k in range(n + 1)] for n in range(dim)]
    def A357078_triangle(dim):
        A = ZZ[['t']]; g = A([0] + [factorial(n) for n in range(1, 30)]).O(dim+2)
        return PartTrans(dim, lambda n: list(g / (1 + 2 * g))[n])
    A357078_triangle(9)
Showing 1-10 of 16 results. Next