A357340
Triangle read by rows. T(n, k) = Sum_{j=0..n-k} binomial(-n, j) * A268438(n - k, j).
Original entry on oeis.org
1, -1, 1, 2, -2, 1, 0, 12, -3, 1, -56, -120, 28, -4, 1, 0, 1680, -450, 50, -5, 1, 15840, -30240, 10416, -1080, 78, -6, 1, 0, 665280, -317520, 33712, -2100, 112, -7, 1, -17297280, -17297280, 12070080, -1391040, 81648, -3600, 152, -8, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] -1, 1;
[2] 2, -2, 1;
[3] 0, 12, -3, 1;
[4] -56, -120, 28, -4, 1;
[5] 0, 1680, -450, 50, -5, 1;
[6] 15840, -30240, 10416, -1080, 78, -6, 1;
[7] 0, 665280, -317520, 33712, -2100, 112, -7, 1;
[8] -17297280, -17297280, 12070080, -1391040, 81648, -3600, 152, -8, 1;
-
A357340 := proc(n, k) local u; u := n - k; (2*u)!*add(binomial(-n, j) * j! *
add((-1)^(j+m)*binomial(u+j, u+m)*abs(Stirling1(u+m, m)), m=0..j)/(u +j)!, j=0..u) end: seq(print(seq(A357340(n, k), k=0..n)), n=0..8);
-
# using function A268438
def A357340(n, k):
return sum(binomial(-n, i) * A268438(n - k, i) for i in range(n - k + 1))
for n in range(10): print([A357340(n, k) for k in range(n + 1)])
A268437
Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](1/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 4, 6, 0, 30, 120, 90, 0, 336, 2800, 5040, 2520, 0, 5040, 80640, 264600, 302400, 113400, 0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400, 0, 2162160, 118198080, 983782800, 2986663680, 4162158000, 2724321600, 681080400
Offset: 0
[1],
[0, 1],
[0, 4, 6],
[0, 30, 120, 90],
[0, 336, 2800, 5040, 2520],
[0, 5040, 80640, 264600, 302400, 113400],
[0, 95040, 2827440, 15190560, 29937600, 24948000, 7484400].
-
A268437 := proc(n,k) local F,T;
F := proc(n,k) option remember;
`if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
F(n-1,k)*(n+k))) end;
T := proc(n,k) option remember;
`if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
(4*n-2)*n*(k*T(n-1,k)+(n+k-1)*T(n-1,k-1)))) end;
T(n,k)/F(n,k) end:
for n from 0 to 6 do seq(A268437(n,k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268437_row := n -> PTrans(n, n->1/(n+1),(n,k)->(-1)^k*(2*n)!):
seq(print(A268437_row(n)),n=0..8);
-
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] StirlingS2[n+m, m], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
A268437 = lambda n, k: (factorial(2*n)/falling_factorial(n+k, n))*sum((-1)^(m+k)* binomial(n+k, n+m)*stirling_number2(n+m, m) for m in (0..k))
for n in (0..7): print([A268437(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k* factorial(2*n))
A269940
Triangle read by rows, T(n, k) = Sum_{m=0..k} (-1)^(m + k)*binomial(n + k, n + m) * |Stirling1(n + m, m)|, for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 3, 0, 6, 20, 15, 0, 24, 130, 210, 105, 0, 120, 924, 2380, 2520, 945, 0, 720, 7308, 26432, 44100, 34650, 10395, 0, 5040, 64224, 303660, 705320, 866250, 540540, 135135, 0, 40320, 623376, 3678840, 11098780, 18858840, 18288270, 9459450, 2027025
Offset: 0
Triangle T(n,k) starts:
[1]
[0, 1]
[0, 2, 3]
[0, 6, 20, 15]
[0, 24, 130, 210, 105]
[0, 120, 924, 2380, 2520, 945]
[0, 720, 7308, 26432, 44100, 34650, 10395]
[0, 5040, 64224, 303660, 705320, 866250, 540540, 135135]
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Anthony Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311, section 4.4.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Nico M. Temme, Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters, Integral Transforms and Special Functions, 2021.
- Nico M. Temme and Ed J. M. Veling, Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z, arXiv:2202.12857 [math.CA], 2022.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
-
T := (n, k) -> add((-1)^(m+k)*binomial(n+k,n+m)*abs(Stirling1(n+m, m)), m=0..k):
seq(print(seq(T(n, k), k=0..n)), n=0..6);
# Alternatively:
T := proc(n, k) option remember;
`if`(k=0, k^n,
`if`(k<=0 or k>n, 0,
(n+k-1)*(T(n-1, k)+T(n-1, k-1)))) end:
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
-
T[n_, k_] := Sum[(-1)^(m+k)*Binomial[n+k, n+m]*Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 12 2022 *)
-
T = lambda n, k: sum((-1)^(m+k)*binomial(n+k, n+m)*stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([T(n, k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: n/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
Name corrected after notice from Ed Veling by
Peter Luschny, Jun 14 2022
A268435
Triangle read by rows, T(n,k) = RF(n-k+1,n-k)*S2(n,k) where RF denotes the rising factorial and S2 the Stirling set numbers, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 12, 6, 1, 0, 120, 84, 12, 1, 0, 1680, 1800, 300, 20, 1, 0, 30240, 52080, 10800, 780, 30, 1, 0, 665280, 1905120, 505680, 42000, 1680, 42, 1, 0, 17297280, 84490560, 29211840, 2857680, 126000, 3192, 56, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 12, 6, 1]
[0, 120, 84, 12, 1]
[0, 1680, 1800, 300, 20, 1]
[0, 30240, 52080, 10800, 780, 30, 1]
[0, 665280, 1905120, 505680, 42000, 1680, 42, 1]
-
T := (n, k) -> pochhammer(n-k+1,n-k)*Stirling2(n,k):
for n from 0 to 9 do seq(T(n,k), k=0..n) od;
# Alternatively:
T := proc(n,k) option remember;
`if`( n=k, 1,
`if`( k=0, 0,
k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end:
for n from 0 to 7 do seq(T(n,k),k=0..n) od;
-
T[n_, k_] := Pochhammer[n-k+1, n-k] StirlingS2[n, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
-
A268435 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number2(n,k)
[[A268435(n,k) for k in (0..n)] for n in range(8)]
A268436
Triangle read by rows, T(n,k) = RF(n-k+1, n-k) * S1(n,k) where RF denotes the rising factorial and S1 the Stirling cycle numbers, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 24, 6, 1, 0, 720, 132, 12, 1, 0, 40320, 6000, 420, 20, 1, 0, 3628800, 460320, 27000, 1020, 30, 1, 0, 479001600, 53343360, 2728320, 88200, 2100, 42, 1, 0, 87178291200, 8693879040, 397111680, 11371920, 235200, 3864, 56, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 24, 6, 1]
[0, 720, 132, 12, 1]
[0, 40320, 6000, 420, 20, 1]
[0, 3628800, 460320, 27000, 1020, 30, 1]
[0, 479001600, 53343360, 2728320, 88200, 2100, 42, 1]
-
T := (n,k) -> pochhammer(n-k+1, n-k)*abs(Stirling1(n,k)):
for n from 0 to 9 do seq(T(n,k), k=0..n) od;
# Alternatively:
T := proc(n,k) option remember;
`if`( n=k, 1,
`if`( k=0, 0,
(n-1)*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end:
for n from 0 to 7 do seq(T(n,k),k=0..n) od;
-
T[n_, k_] := Pochhammer[n-k+1, n-k] Abs[StirlingS1[n, k]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
-
A268436 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number1(n,k)
[[A268436(n,k) for k in (0..n)] for n in range(8)]
A268440
Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling1(n+m,m), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 3, 0, 90, 120, 15, 0, 1344, 3640, 1680, 105, 0, 25200, 110880, 107100, 25200, 945, 0, 570240, 3617460, 5815040, 2910600, 415800, 10395, 0, 15135120, 128576448, 303963660, 256736480, 78828750, 7567560, 135135
Offset: 0
[1]
[0, 1]
[0, 8, 3]
[0, 90, 120, 15]
[0, 1344, 3640, 1680, 105]
[0, 25200, 110880, 107100, 25200, 945]
[0, 570240, 3617460, 5815040, 2910600, 415800, 10395]
-
# The function PTrans is defined in A269941.
A268440_row := n -> PTrans(n, n->n/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
seq(print(A268440_row(n)), n=0..8);
-
A268440 = lambda n, k: binomial(2*n,n+k)*sum((-1)^(m+k)*binomial(n+k,n+m)* stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([A268440(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
# Alternatively
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))
Showing 1-6 of 6 results.
Comments