cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A268435 Triangle read by rows, T(n,k) = RF(n-k+1,n-k)*S2(n,k) where RF denotes the rising factorial and S2 the Stirling set numbers, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 12, 6, 1, 0, 120, 84, 12, 1, 0, 1680, 1800, 300, 20, 1, 0, 30240, 52080, 10800, 780, 30, 1, 0, 665280, 1905120, 505680, 42000, 1680, 42, 1, 0, 17297280, 84490560, 29211840, 2857680, 126000, 3192, 56, 1
Offset: 0

Views

Author

Peter Luschny, Mar 07 2016

Keywords

Examples

			[1]
[0,      1]
[0,      2,       1]
[0,     12,       6,      1]
[0,    120,      84,     12,     1]
[0,   1680,    1800,    300,    20,    1]
[0,  30240,   52080,  10800,   780,   30,  1]
[0, 665280, 1905120, 505680, 42000, 1680, 42, 1]
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> pochhammer(n-k+1,n-k)*Stirling2(n,k):
    for n from 0 to 9 do seq(T(n,k), k=0..n) od;
    # Alternatively:
    T := proc(n,k) option remember;
      `if`( n=k, 1,
      `if`( k=0, 0,
       k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end:
    for n from 0 to 7 do seq(T(n,k),k=0..n) od;
  • Mathematica
    T[n_, k_] := Pochhammer[n-k+1, n-k] StirlingS2[n, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
  • Sage
    A268435 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number2(n,k)
    [[A268435(n,k) for k in (0..n)] for n in range(8)]

Formula

T(n,k) = binomial(n,k)*Sum_{i=0..k} binomial(k,i)*A268437(n-k,i).
T(n,k) = binomial(-k,-n)*Sum_{i=0..n-k} binomial(-n,i)*A268438(n-k,i).
T(n,k) = 4^(n-k)*Gamma(n-k+1/2)*A048993(n,k)/sqrt(Pi).
T(n,1) = (2*n-2)!/(n-1)! for n>=1.
T(n,n-1) = (n-1)*n for n>=1.
Recurrence: T(n,k) = 1 if k=n; 0 if k=0; otherwise k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1).
Showing 1-1 of 1 results.