A269957
Triangle read by rows, T(n,k) = Sum_{j=k..n} A269940(n,j)*A269939(j,k), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 5, 9, 0, 41, 210, 225, 0, 469, 5115, 14175, 11025, 0, 6889, 142492, 763350, 1455300, 893025, 0, 123605, 4566149, 41943090, 146522250, 212837625, 108056025, 0, 2620169, 166939742, 2462128095, 13973628900, 35936814375, 42141849750, 18261468225
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 5, 9]
[0, 41, 210, 225]
[0, 469, 5115, 14175, 11025]
[0, 6889, 142492, 763350, 1455300, 893025]
-
F = lambda n,k,f: sum((-1)^(m+k)*binomial(n+k,n+m)*f(n+m,m) for m in (0..k))
T = lambda n,k: sum(F(n, j, stirling_number1)*F(j, k, stirling_number2) for j in (k..n))
for n in (0..6): print([T(n, k) for k in (0..n)])
A269939
Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 3;
0, 1, 10, 15;
0, 1, 25, 105, 105;
0, 1, 56, 490, 1260, 945;
0, 1, 119, 1918, 9450, 17325, 10395;
0, 1, 246, 6825, 56980, 190575, 270270, 135135;
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- Marko Riedel, Math Stackexchange, Upper Stirling numbers and Ward numbers.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 1, 12.
Alternating row sums are signed factorials
A133942.
-
# first version
A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
seq(seq(A269939(n,k), k=0..n), n=0..8);
# Alternatively:
T := proc(n,k) option remember;
`if`(k=0 and n=0, 1,
`if`(k<=0 or k>n, 0,
k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
for n from 0 to 6 do seq(T(n,k),k=0..n) od;
# simple, third version
T := (n,k)-> (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
-
Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
-
T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
-
T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
for n in (0..6): print([T(n,k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
A268438
Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](n/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 6, 0, 180, 240, 90, 0, 8064, 14560, 10080, 2520, 0, 604800, 1330560, 1285200, 604800, 113400, 0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400, 0, 10897286400, 30858347520, 43770767040, 36970053120, 18918900000, 5448643200, 681080400
Offset: 0
Triangle starts:
[1],
[0, 1],
[0, 8, 6],
[0, 180, 240, 90],
[0, 8064, 14560, 10080, 2520],
[0, 604800, 1330560, 1285200, 604800, 113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
-
A268438 := proc(n,k) local F,T;
F := proc(n,k) option remember;
`if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
F(n-1,k)*(n+k))) end;
T := proc(n, k) option remember;
`if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
(4*n-2)*n*(n+k-1)*(T(n-1,k)+T(n-1,k-1)))) end:
T(n,k)/F(n,k) end:
for n from 0 to 6 do seq(A268438(n,k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268438_row := n -> PTrans(n, n->n/(n+1),(n,k)->(-1)^k*(2*n)!):
seq(lprint(A268438_row(n)), n=0..8);
-
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
A268438 = lambda n,k: (factorial(2*n)/falling_factorial(n+k,n))*sum((-1)^(m+k)* binomial(n+k,n+m)*stirling_number1(n+m,m) for m in (0..k))
for n in (0..7): print([A268438(n,m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n))
A118788
Triangle where T(n,k) = n!/(n-k)!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 1, 6, 23, 41, 1, 10, 65, 255, 469, 1, 15, 145, 930, 3679, 6889, 1, 21, 280, 2590, 16429, 65247, 123605, 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169, 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901, 1, 45, 1230, 24360
Offset: 0
Row sums e.g.f. equals the exponential of the diagonal e.g.f.:
1 + x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! +...+ A118789(n)*x^n/n! +...
= exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +...+ A032188(n)*x^n/n! +...).
Triangle begins:
1;
1, 1;
1, 3, 5;
1, 6, 23, 41;
1, 10, 65, 255, 469;
1, 15, 145, 930, 3679, 6889;
1, 21, 280, 2590, 16429, 65247, 123605;
1, 28, 490, 6090, 54789, 344694, 1371887, 2620169;
1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901;
...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
F(x)^2 = (1 + x) + 17/12*x^2 + 2*x^3 + 671/240*x^4 +...
F(x)^3 = (1 + 3/2*x + 5/2*x^2) + 4*x^3 + 1489/240*x^4 +...
F(x)^4 = (1 + 6/3*x + 23/6*x^2 + 41/6*x^3) + 8351/720*x^4 +...
F(x)^5 = (1 + 10/4*x + 65/12*x^2 + 255/24*x^3 + 469/24*x^4) +...
A268440
Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling1(n+m,m), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 3, 0, 90, 120, 15, 0, 1344, 3640, 1680, 105, 0, 25200, 110880, 107100, 25200, 945, 0, 570240, 3617460, 5815040, 2910600, 415800, 10395, 0, 15135120, 128576448, 303963660, 256736480, 78828750, 7567560, 135135
Offset: 0
[1]
[0, 1]
[0, 8, 3]
[0, 90, 120, 15]
[0, 1344, 3640, 1680, 105]
[0, 25200, 110880, 107100, 25200, 945]
[0, 570240, 3617460, 5815040, 2910600, 415800, 10395]
-
# The function PTrans is defined in A269941.
A268440_row := n -> PTrans(n, n->n/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
seq(print(A268440_row(n)), n=0..8);
-
A268440 = lambda n, k: binomial(2*n,n+k)*sum((-1)^(m+k)*binomial(n+k,n+m)* stirling_number1(n+m, m) for m in (0..k))
for n in (0..7): print([A268440(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
# Alternatively
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))
A358622
Regular triangle read by rows. T(n, k) = [[n, k]], where [[n, k]] are the second order Stirling cycle numbers (or second order reciprocal Stirling numbers). T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 6, 3, 0, 0, 0, 24, 20, 0, 0, 0, 0, 120, 130, 15, 0, 0, 0, 0, 720, 924, 210, 0, 0, 0, 0, 0, 5040, 7308, 2380, 105, 0, 0, 0, 0, 0, 40320, 64224, 26432, 2520, 0, 0, 0, 0, 0, 0, 362880, 623376, 303660, 44100, 945, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 0;
[2] 0, 1, 0;
[3] 0, 2, 0, 0;
[4] 0, 6, 3, 0, 0;
[5] 0, 24, 20, 0, 0, 0;
[6] 0, 120, 130, 15, 0, 0, 0;
[7] 0, 720, 924, 210, 0, 0, 0, 0;
[8] 0, 5040, 7308, 2380, 105, 0, 0, 0, 0;
[9] 0, 40320, 64224, 26432, 2520, 0, 0, 0, 0, 0;
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994, thirty-fourth printing 2022.
A008306 is an irregular subtriangle with more information.
-
P := (n, x) -> (-x)^n*hypergeom([-n, x], [], 1/x):
row := n -> seq(coeff(simplify(P(n, x)), x, k), k = 0..n):
for n from 0 to 9 do row(n) od;
# Alternative:
T := (n, k) -> add(binomial(n, k - j)*abs(Stirling1(n - k + j, j))*(-1)^(k - j), j = 0..k): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Using the e.g.f.:
egf := (exp(t)*(1 - t))^(-z): ser := series(egf, t, 12):
seq(print(seq(n!*coeff(coeff(ser, t, n), z, k), k=0..n)), n = 0..9);
# Using second order Eulerian numbers:
A358622 := proc(n, k) local j;
add(binomial(j, n - 2*k)*combinat:-eulerian2(n - k, j), j = 0..n-k) end:
seq(seq(A358622(n, k), k = 0..n), n = 0..12);
# Using generalized Laguerre polynomials:
P := (n, x) -> (-1)^n*n!*LaguerreL(n, -n - x, -x):
row := n -> seq(coeff(simplify(P(n, x)), x, k), k = 0..n):
seq(print(row(n)), n = 0..9);
-
# recursion over rows
from functools import cache
@cache
def StirlingCycleOrd2(n: int) -> list[int]:
if n == 0: return [1]
if n == 1: return [0, 0]
rov: list[int] = StirlingCycleOrd2(n - 2)
row: list[int] = StirlingCycleOrd2(n - 1) + [0]
for k in range(1, n // 2 + 1):
row[k] = (n - 1) * (rov[k - 1] + row[k])
return row
for n in range(9): print(StirlingCycleOrd2(n))
# Alternative, using function BellMatrix from A264428.
from math import factorial
def f(k: int) -> int:
return factorial(k) if k > 0 else 0
print(BellMatrix(f, 9))
Showing 1-6 of 6 results.
Comments