Original entry on oeis.org
1, 2, 9, 71, 800, 11659, 208173, 4398148, 107293711, 2967800711, 91777098006, 3137581240925, 117499040544197, 4783424590188490, 210333509575901445, 9934472399437068811, 501615620424564184408, 26963169913347131361647
Offset: 0
E.g.f.: A(x) = 1 + 1*x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! + ... =
exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +... + A032188(n)*x^n/n! +...).
-
Table[Sum[n!/(n-k)! * SeriesCoefficient[(x/(2*x + Log[1-x]))^(n + 1), {x, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 01 2025 *)
-
{a(n)=local(x=X+X^2*O(X^n));sum(k=0,n,n!/(n-k)!*polcoeff((x/(2*x+log(1-x)))^(n+1),k,X))}
A118790
Secondary diagonal of triangle A118788.
Original entry on oeis.org
1, 3, 23, 255, 3679, 65247, 1371887, 33347535, 919848991, 28382683263, 968565339983, 36217270235055, 1472548026160639, 64679673007670367, 3052084360057720367, 153980839859926277775, 8270901171633696369631
Offset: 0
-
Table[(n+1)! * SeriesCoefficient[(x/(2*x + Log[1-x]))^(n+2),{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 01 2025 *)
-
{a(n)=local(x=X+X^2*O(X^(n)));(n+1)!*polcoeff((x/(2*x+log(1-x)))^(n+2),n,X)}
A241765
a(n) = n*(n + 1)*(n + 2)*(3*n + 17)/24.
Original entry on oeis.org
0, 5, 23, 65, 145, 280, 490, 798, 1230, 1815, 2585, 3575, 4823, 6370, 8260, 10540, 13260, 16473, 20235, 24605, 29645, 35420, 41998, 49450, 57850, 67275, 77805, 89523, 102515, 116870, 132680, 150040, 169048, 189805, 212415, 236985, 263625, 292448
Offset: 0
a(7) = 4*0 + 5*1 + 6*3 + 7*6 + 8*10 + 9*15 + 10*21 + 11*28 = 798.
-
/* By first comment: */ k:=4; A000217:=func; [&+[(i+k)*A000217(i): i in [0..n]]: n in [0..40]];
-
A241765:=n->n*(n + 1)*(n + 2)*(3*n + 17)/24; seq(A241765(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
-
Table[n (n + 1) (n + 2) (3 n + 17)/24, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 23, 65, 145}, 40]
CoefficientList[Series[x (5 - 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
-
makelist(coeff(taylor(x*(5-2*x)/(1-x)^5, x, 0, n), x, n), n, 0, 40);
-
a(n)=n*(n+1)*(n+2)*(3*n+17)/24 \\ Charles R Greathouse IV, Oct 07 2015
-
x='x+O('x^99); concat(0, Vec(x*(5-2*x)/(1-x)^5)) \\ Altug Alkan, Apr 10 2016
-
[n*(n+1)*(n+2)*(3*n+17)/24 for n in (0..40)]
A118787
Triangle where T(n,k) = n!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 12, 23, 41, 24, 60, 130, 255, 469, 120, 360, 870, 1860, 3679, 6889, 720, 2520, 6720, 15540, 32858, 65247, 123605, 5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169, 40320, 181440, 574560, 1527120, 3638376, 8029980
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 5;
6, 12, 23, 41;
24, 60, 130, 255, 469;
120, 360, 870, 1860, 3679, 6889;
720, 2520, 6720, 15540, 32858, 65247, 123605;
5040, 20160, 58800, 146160, 328734, 689388, 1371887, 2620169; ...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
F(x)^2 = (1 + x)/1! +17/12*x^2 + 2*x^3 + 671/240*x^4 ...
F(x)^3 = (2 + 3*x + 5*x^2)/2! + 4*x^3 + 1489/240*x^4 +...
F(x)^4 = (6 + 12*x + 23*x^2 + 41/6*x^3)/3! + 8351/720*x^4 +...
F(x)^5 = (24 + 60*x + 130*x^2 + 255*x^3 + 469*x^4)/4! +...
Showing 1-4 of 4 results.
Comments