A001296
4-dimensional pyramidal numbers: a(n) = (3*n+1)*binomial(n+2, 3)/4. Also Stirling2(n+2, n).
Original entry on oeis.org
0, 1, 7, 25, 65, 140, 266, 462, 750, 1155, 1705, 2431, 3367, 4550, 6020, 7820, 9996, 12597, 15675, 19285, 23485, 28336, 33902, 40250, 47450, 55575, 64701, 74907, 86275, 98890, 112840, 128216, 145112, 163625, 183855, 205905, 229881, 255892, 284050, 314470
Offset: 0
G.f. = x + 7*x^2 + 25*x^3 + 65*x^4 + 140*x^5 + 266*x^6 + 462*x^7 + 750*x^8 + 1155*x^9 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/3).
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
- S. Butler and P. Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4, page 5.
- M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.
- L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Chanticleer Press, NY, 1950, p. 36.
- C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., 15 (1923),3-4. [Annotated scanned copy]
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 29.
- T. Mansour, Restricted permutations by patterns of type 2-1, arXiv:math/0202219 [math.CO], 2002.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
a(n)=f(n, 2) where f is given in
A034261.
a(n)=
A093560(n+3, 4), (3, 1)-Pascal column.
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
/* A000027 convolved with A000326: */ A000326:=func; [&+[(n-i+1)*A000326(i): i in [0..n]]: n in [0..40]]; // Bruno Berselli, Dec 06 2012
-
[(3*n+1)*Binomial(n+2,3)/4: n in [0..40]]; // Vincenzo Librandi, Jul 30 2014
-
A001296:=-(1+2*z)/(z-1)**5; # Simon Plouffe in his 1992 dissertation for sequence without the leading zero
-
Table[n*(1+n)*(2+n)*(1+3*n)/24, {n, 0, 100}]
CoefficientList[Series[x (1 + 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 30 2014 *)
Table[StirlingS2[n+2, n], {n, 0, 40}] (* Jean-François Alcover, Jun 24 2015 *)
Table[ListCorrelate[Accumulate[Range[n]],Range[n]],{n,0,40}]//Flatten (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,1,7,25,65},40] (* Harvey P. Dale, Aug 14 2017 *)
-
t(n)=n*(n+1)/2
for(i=1,30,print1(","sum(j=1,i,j*t(j))))
-
{a(n) = n * (n+1) * (n+2) * (3*n+1) / 24}; /* Michael Somos, Sep 04 2017 */
-
[stirling_number2(n+2,n) for n in range(0,38)] # Zerinvary Lajos, Mar 14 2009
A000914
Stirling numbers of the first kind: s(n+2, n).
Original entry on oeis.org
0, 2, 11, 35, 85, 175, 322, 546, 870, 1320, 1925, 2717, 3731, 5005, 6580, 8500, 10812, 13566, 16815, 20615, 25025, 30107, 35926, 42550, 50050, 58500, 67977, 78561, 90335, 103385, 117800, 133672, 151096, 170170, 190995, 213675, 238317, 265031
Offset: 0
Examples include E(K_1,2,3) = s(2+2,2) = 11 and E(K_1,2,3,4,5) = s(4+2,4) = 85, where E is the function that counts edges of graphs.
For n=2 the a(2)=11 functions f:[4]->[4] with exactly two f(x)=x and two f(x)>x are given by the 11 image vectors of form <f(1),f(2),f(3),f(4)> that follow: <1,3,4,4>, <1,4,4,4>, <2,2,4,4>, <3,2,4,4>, <4,2,4,4>, <2,3,3,4>, <2,4,3,4>, <3,3,3,4>, <3,4,3,4>, <4,3,3,4>, and <4,4,3,4>. - _Dennis P. Walsh_, Sep 06 2017
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- George E. Andrews, Number Theory, Dover Publications, New York, 1971, p. 4.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- H. S. Hall and S. R. Knight, Higher Algebra, Fourth Edition, Macmillan, 1891, p. 518.
- Zhu Shijie, Jade Mirror of the Four Unknowns (Siyuan yujian), Book III Guo Duo Die Gang (Piles of Fruit), Problem number 1, 1303.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Karl Dienger, Beiträge zur Lehre von den arithmetischen und geometrischen Reihen höherer Ordnung, Jahres-Bericht Ludwig-Wilhelm-Gymnasium Rastatt, Rastatt, 1910. [Annotated scanned copy]
- Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., Vol. 1, No. 3 (1926), pp. 44-49. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Zhu Shijie, Jade Mirror of the Four Unknowns 2, Translation by Library of Chinese classics, original from 1303.
- Wikipedia, Jade Mirror of the Four Unknowns.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf. similar sequences listed in
A241765.
Cf.
A006325(n+1) (Zhu Shijie's problem number 2 uses a pyramid with square base).
-
a000914 n = a000914_list !! n
a000914_list = scanl1 (+) a006002_list
-- Reinhard Zumkeller, Mar 25 2014
-
[StirlingFirst(n+2, n): n in [0..40]]; // Vincenzo Librandi, May 28 2019
-
A000914 := n -> 1/24*(n+1)*n*(n+2)*(3*n+5);
A000914 := proc(n)
combinat[stirling1](n+2,n) ;
end proc: # R. J. Mathar, May 19 2016
-
Table[StirlingS1[n+2,n],{n,0,40}] (* Harvey P. Dale, Aug 24 2011 *)
a[ n_] := n (n + 1) (n + 2) (3 n + 5) / 24; (* Michael Somos, Sep 04 2017 *)
-
a(n)=sum(i=1,n+1,sum(j=1,n+1,i*j*(i
-
a(n)=sum(i=1,n+1,sum(j=1,i-1,i*j)) \\ Charles R Greathouse IV, Apr 07 2015
-
a(n) = binomial(n+2, 3)*(3*n+5)/4 \\ Charles R Greathouse IV, Apr 07 2015
-
[stirling_number1(n+2, n) for n in range(41)] # Zerinvary Lajos, Mar 14 2009
More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000
Erroneous duplicate of the polynomial formula removed by
R. J. Mathar, Sep 15 2009
A050534
Tritriangular numbers: a(n) = binomial(binomial(n,2),2) = n*(n+1)*(n-1)*(n-2)/8.
Original entry on oeis.org
0, 0, 0, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, 3003, 4095, 5460, 7140, 9180, 11628, 14535, 17955, 21945, 26565, 31878, 37950, 44850, 52650, 61425, 71253, 82215, 94395, 107880, 122760, 139128, 157080, 176715, 198135, 221445, 246753, 274170, 303810, 335790
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999
For a(3)=3, the chiral pairs of square colorings are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Oct 20 2020
- Arthur T. Benjamin and Jennifer Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 154.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, Problem 1, page 72.
- Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.5, case k=2.
- William A. Tedeschi, Table of n, a(n) for n = 0..10000
- Serhat Bulut and Oktay Erkan Temizkan, Subset Sum Problem, Jan 20 2015.
- Alexander Burstein, Sergey Kitaev and Toufik Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A., Vol. 19, No. 2-3 (2008), pp. 27-38.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Frank Harary and Bennet Manvel, On the number of cycles in a graph, Matemat. casop. 21 (1971) 55-63, Theorem 1 for 4-cycles in complete graph.
- Louis H. Kauffman, Non-Commutative Worlds-Classical Constraints, Relativity and the Bianchi Identity, arXiv preprint arXiv:1109.1085 [math-ph], 2011. (See Appendix)
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.2.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Frank Ruskey and Jennifer Woodcock, The Rand and block distances of pairs of set partitions, in Combinatorial Algorithms, 287-299, Lecture Notes in Comput. Sci., 7056, Springer, Heidelberg, 2011.
- C. N. Schmall, Problem 432, The American Mathematical Monthly, Vol. 22, No. 4 (1915), p. 130.
- Eric Weisstein's World of Mathematics, Complete Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Tritriangular Number.
- Chai Wah Wu, Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics, arXiv:1407.5663 [quant-ph], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf. similar sequences listed in
A241765.
Row 2 of
A325006 (orthoplex facets, orthotope vertices) and
A337409 (orthotope edges, orthoplex ridges).
Row 4 of
A293496 (cycles of n colors using k or fewer colors).
-
List([0..40],n->3*Binomial(n+1,4)); # Muniru A Asiru, Mar 20 2018
-
[3*Binomial(n+1, 4): n in [0..40]]; // Vincenzo Librandi, Feb 14 2015
-
[seq(binomial(n+1,4)*3,n=0..40)]; # Zerinvary Lajos, Jul 18 2006
-
Table[Binomial[Binomial[n, 2], 2], {n, 0, 50}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 3, 15}, 40] (* Harvey P. Dale, Dec 14 2011 *)
(* Start from Eric W. Weisstein, Mar 13 2018 *)
Binomial[Binomial[Range[0, 20], 2], 2]
Nest[Binomial[#, 2] &, Range[0, 20], 2]
Nest[PolygonalNumber[# - 1] &, Range[0, 20], 2]
CoefficientList[Series[3 x^3/(1 - x)^5, {x, 0, 20}], x]
(* End *)
-
a(n)=n*(n+1)*(n-1)*(n-2)/8 \\ Charles R Greathouse IV, Nov 20 2012
-
x='x+O('x^100); concat([0, 0, 0], Vec(3*x^3/(1-x)^5)) \\ Altug Alkan, Nov 01 2015
-
[(binomial(binomial(n,2),2)) for n in range(0, 39)] # Zerinvary Lajos, Nov 30 2009
Additional comments from Antreas P. Hatzipolakis, May 03 2002
A005286
a(n) = (n + 3)*(n^2 + 6*n + 2)/6.
Original entry on oeis.org
1, 6, 15, 29, 49, 76, 111, 155, 209, 274, 351, 441, 545, 664, 799, 951, 1121, 1310, 1519, 1749, 2001, 2276, 2575, 2899, 3249, 3626, 4031, 4465, 4929, 5424, 5951, 6511, 7105, 7734, 8399, 9101, 9841, 10620, 11439, 12299, 13201, 14146, 15135, 16169, 17249
Offset: 0
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,3).
- R. K. Guy, personal communication.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
-
Table[(n + 3) (n^2 + 6*n + 2)/6, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
LinearRecurrence[{4,-6,4,-1},{1,6,15,29},50] (* Harvey P. Dale, Mar 07 2012 *)
Table[Binomial[n, 3] + Binomial[n, 2] - n, {n, 3, 47}] (* or *)
CoefficientList[Series[(1 + 2 x - 3 x^2 + x^3)/(1 - x)^4, {x, 0, 44}], x] (* Michael De Vlieger, Jul 09 2016 *)
-
a(n)=n+=3; (n^3-7*n)/6 /* Michael Somos, May 12 2005 */
A215862
Number of simple labeled graphs on n+2 nodes with exactly n connected components that are trees or cycles.
Original entry on oeis.org
0, 4, 19, 55, 125, 245, 434, 714, 1110, 1650, 2365, 3289, 4459, 5915, 7700, 9860, 12444, 15504, 19095, 23275, 28105, 33649, 39974, 47150, 55250, 64350, 74529, 85869, 98455, 112375, 127720, 144584, 163064, 183260, 205275, 229215, 255189, 283309, 313690, 346450
Offset: 0
a(1) = 4:
.1-2. .1-2. .1-2. .1 2.
.|/ . .|. . . / . .|/ .
.3... .3... .3... .3...
Regarding the sixth formula, see similar sequences listed in
A241765.
-
a:= n-> binomial(n+2,3)*(3*n+13)/4:
seq(a(n), n=0..40);
-
Table[Binomial[n+2,3] (3n+13)/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,4,19,55,125},40] (* Harvey P. Dale, Sep 10 2012 *)
A239568
Number of ways to place 2 points on a triangular grid of side n so that they are not adjacent.
Original entry on oeis.org
0, 6, 27, 75, 165, 315, 546, 882, 1350, 1980, 2805, 3861, 5187, 6825, 8820, 11220, 14076, 17442, 21375, 25935, 31185, 37191, 44022, 51750, 60450, 70200, 81081, 93177, 106575, 121365, 137640, 155496, 175032, 196350, 219555, 244755, 272061, 301587, 333450, 367770
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- M. J. Hay, J. Schiff, N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499, 2015
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
Regarding the third formula, see similar sequences listed in
A241765.
A212343
a(n) = (n+1)*(n-2)*(n-3)/2.
Original entry on oeis.org
0, 0, 5, 18, 42, 80, 135, 210, 308, 432, 585, 770, 990, 1248, 1547, 1890, 2280, 2720, 3213, 3762, 4370, 5040, 5775, 6578, 7452, 8400, 9425, 10530, 11718, 12992, 14355, 15810, 17360, 19008, 20757, 22610, 24570, 26640, 28823, 31122, 33540, 36080, 38745, 41538, 44462, 47520, 50715, 54050, 57528
Offset: 2
- Colin Barker, Table of n, a(n) for n = 2..1000
- S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf. similar sequences of the type m*(m+1)*(m+k)/2 listed in
A267370.
-
QQ0[t, x] = (1 - (1-4*x*t)^(1/2)) / (2*x*t); QQ1[t, x] = 1/(1 - t*QQ0[t, x]); QQ2[t, x] = (1 + t*(QQ1[t, x] - QQ0[t, x]))/(1 - t*QQ0[t, x]); QQ3[t, x] = (1 + t*(QQ2[t, x] - QQ0[t, x] + t*(QQ1[t, x] - QQ0[t, x])))/(1 - t*QQ0[t, x]); CoefficientList[Coefficient[Simplify[Series[QQ3[t, x], {t, 0, 35}]],x],t] (* Robert Price, Jun 04 2012 *)
LinearRecurrence[{4,-6,4,-1},{0,0,5,18},60] (* Harvey P. Dale, Mar 15 2018 *)
-
Vec(-x^4*(2*x-5)/(x-1)^4 + O(x^100)) \\ Colin Barker, Jul 10 2015
A269951
Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 5, 1, 0, 16, 23, 9, 1, 0, 65, 116, 65, 14, 1, 0, 326, 669, 470, 145, 20, 1, 0, 1957, 4429, 3634, 1415, 280, 27, 1, 0, 13700, 33375, 30681, 14084, 3535, 490, 35, 1, 0, 109601, 283072, 284066, 147532, 43939, 7756, 798, 44, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 5, 5, 1;
0, 16, 23, 9, 1;
0, 65, 116, 65, 14, 1;
0, 326, 669, 470, 145, 20, 1;
-
A269951 := (n,k) -> add((-1)^(n-j)*binomial(-j,-n)*abs(Stirling1(j,k)), j=0..n):
seq(seq(A269951(n,k), k=0..n), n=0..9);
-
Flatten[ Table[ Sum[(-1)^(n-j) Binomial[-j,-n] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9}, {k,0,n}]]
Original entry on oeis.org
-1, -1, 5, 25, 70, 154, 294, 510, 825, 1265, 1859, 2639, 3640, 4900, 6460, 8364, 10659, 13395, 16625, 20405, 24794, 29854, 35650, 42250, 49725, 58149, 67599, 78155, 89900, 102920, 117304, 133144, 150535, 169575, 190365, 213009, 237614, 264290, 293150, 324310, 357889, 394009, 432795, 474375
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, b(n,n-2).
Cf. similar sequences listed in
A241765.
-
with(combinat): for n from 3 to 100 do for k from n-2 to n-2 do printf(`%d,`,sum(binomial(l,k)*k^(l-k)*stirling1(n,l), l=k..n)) od: od:
-
f[n_] := 3*n - 1; s1 = s2 = s3 = 0; lst = {}; Do[a = f[n]; s1 += a;
s2 += s1; s3 += s2; AppendTo[lst, s3], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
Drop[CoefficientList[Series[-x^2 (1 - 4*x)/(1 - x)^5, {x, 0, 50}], x], 2] (* Vincenzo Librandi, Mar 22 2012 *)
Rest[Table[(n - 1) n (n + 1)(3 n - 10)/24, {n, 50}]] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1},{-1, -1, 5, 25, 70}, 50] (* Harvey P. Dale, Jun 05 2012 *)
-
x='x+O('x^99); Vec(x^2*(-1+4*x)/(1-x)^5) \\ Altug Alkan, Sep 13 2017
A118788
Triangle where T(n,k) = n!/(n-k)!*[x^k] ( x/(2*x + log(1-x)) )^(n+1), for n>=k>=0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 1, 6, 23, 41, 1, 10, 65, 255, 469, 1, 15, 145, 930, 3679, 6889, 1, 21, 280, 2590, 16429, 65247, 123605, 1, 28, 490, 6090, 54789, 344694, 1371887, 2620169, 1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901, 1, 45, 1230, 24360
Offset: 0
Row sums e.g.f. equals the exponential of the diagonal e.g.f.:
1 + x + 2*x^2/2! + 9*x^3/3! + 71*x^4/4! +...+ A118789(n)*x^n/n! +...
= exp(x + x^2/2! + 5*x^3/3! + 41*x^4/4! +...+ A032188(n)*x^n/n! +...).
Triangle begins:
1;
1, 1;
1, 3, 5;
1, 6, 23, 41;
1, 10, 65, 255, 469;
1, 15, 145, 930, 3679, 6889;
1, 21, 280, 2590, 16429, 65247, 123605;
1, 28, 490, 6090, 54789, 344694, 1371887, 2620169;
1, 36, 798, 12726, 151599, 1338330, 8367785, 33347535, 64074901;
...
Triangle is formed from powers of F(x) = x/(2*x + log(1-x)):
F(x)^1 = (1) + 1/2*x + 7/12*x^2 + 17/24*x^3 + 629/720*x^4 +...
F(x)^2 = (1 + x) + 17/12*x^2 + 2*x^3 + 671/240*x^4 +...
F(x)^3 = (1 + 3/2*x + 5/2*x^2) + 4*x^3 + 1489/240*x^4 +...
F(x)^4 = (1 + 6/3*x + 23/6*x^2 + 41/6*x^3) + 8351/720*x^4 +...
F(x)^5 = (1 + 10/4*x + 65/12*x^2 + 255/24*x^3 + 469/24*x^4) +...
Showing 1-10 of 10 results.
Comments