A239567
Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.
Original entry on oeis.org
1, 3, 6, 6, 1, 10, 27, 21, 1, 15, 75, 151, 114, 27, 1, 21, 165, 615, 1137, 999, 353, 27, 28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2, 36, 546, 4571, 23265, 74811, 153194, 196899, 153072, 67229, 14727, 1257, 28, 45, 882, 9926, 71211, 342042, 1124820
Offset: 1
Triangle begins:
1;
3;
6, 6, 1;
10, 27, 21, 1;
15, 75, 151, 114, 27, 1;
21, 165, 615, 1137, 999, 353, 27;
28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2;
...
There is T(10, 19) = 1 way to place 19 points (X) on a grid of side 10 under to the condition mentioned above:
X
. .
. X .
X . . X
. . X . .
. X . . X .
X . . X . . X
. . X . . X . .
. X . . X . . X .
X . . X . . X . . X
This pattern seems to be the densest packing for all n == 1 (mod 3) and n >= 10.
From _Eric W. Weisstein_, Nov 11 2016: (Start)
Independence polynomials of the n-triangular grid graphs for n = 1, 2, ...:
1 + 3*x,
1 + 6*x + 6*x^2 + x^3,
1 + 10*x + 27*x^2 + 21*x^3 + x^4,
1 + 15*x + 75*x^2 + 151*x^3 + 114*x^4 + 27*x^5 + x^6,
...
(End)
- Heinrich Ludwig, Table of n, a(n) for n = 1..136
- Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
A241765
a(n) = n*(n + 1)*(n + 2)*(3*n + 17)/24.
Original entry on oeis.org
0, 5, 23, 65, 145, 280, 490, 798, 1230, 1815, 2585, 3575, 4823, 6370, 8260, 10540, 13260, 16473, 20235, 24605, 29645, 35420, 41998, 49450, 57850, 67275, 77805, 89523, 102515, 116870, 132680, 150040, 169048, 189805, 212415, 236985, 263625, 292448
Offset: 0
a(7) = 4*0 + 5*1 + 6*3 + 7*6 + 8*10 + 9*15 + 10*21 + 11*28 = 798.
-
/* By first comment: */ k:=4; A000217:=func; [&+[(i+k)*A000217(i): i in [0..n]]: n in [0..40]];
-
A241765:=n->n*(n + 1)*(n + 2)*(3*n + 17)/24; seq(A241765(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
-
Table[n (n + 1) (n + 2) (3 n + 17)/24, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 23, 65, 145}, 40]
CoefficientList[Series[x (5 - 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
-
makelist(coeff(taylor(x*(5-2*x)/(1-x)^5, x, 0, n), x, n), n, 0, 40);
-
a(n)=n*(n+1)*(n+2)*(3*n+17)/24 \\ Charles R Greathouse IV, Oct 07 2015
-
x='x+O('x^99); concat(0, Vec(x*(5-2*x)/(1-x)^5)) \\ Altug Alkan, Apr 10 2016
-
[n*(n+1)*(n+2)*(3*n+17)/24 for n in (0..40)]
A239569
Number of ways to place 3 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 21, 151, 615, 1845, 4571, 9926, 19566, 35805, 61765, 101541, 160381, 244881, 363195, 525260, 743036, 1030761, 1405221, 1886035, 2495955, 3261181, 4211691, 5381586, 6809450, 8538725, 10618101, 13101921, 16050601, 19531065, 23617195, 28390296, 33939576
Offset: 2
-
[(n^2-3*n+2)*(n^4+6*n^3-23*n^2-92*n+264)/48: n in [2..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[- x (11 x^4 - 36 x^3 + 25 x^2 + 14 x + 1)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,21,151,615,1845,4571},50] (* Harvey P. Dale, Aug 08 2023 *)
-
concat(0, Vec(-x^3*(11*x^4-36*x^3+25*x^2+14*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Mar 22 2014
A239570
Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1)
-
[(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,114,1137,6100,23265,71211,186739,436437},30] (* Harvey P. Dale, May 28 2025 *)
-
concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
A239571
Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 27, 999, 11565, 74811, 342042, 1239525, 3799488, 10259640, 25076952, 56552364, 119324403, 238062357, 452774595, 826245798, 1454229216, 2479147536, 4108199481, 6636929805, 10479498849, 16207085223, 24596072424, 36687908235, 53862785520, 77929575480
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)
-
[(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
-
concat([0,0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ Colin Barker, Mar 22 2014
A282998
Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3
There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
X
. .
X . X
. . . .
X . X . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
-
Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
-
concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017
A368569
Irregular triangle read by rows: T(n,k) is the number of essential graphs with n nodes and k (directed or undirected) edges (n >= 1, 0 <= k <= n*(n-1)/2).
Original entry on oeis.org
1, 1, 1, 1, 3, 6, 1, 1, 6, 27, 60, 66, 24, 1, 1, 10, 75, 350, 1120, 2130, 2595, 1730, 690, 80, 1, 1, 15, 165, 1235, 6930, 27882, 79825, 162315, 236490, 245150, 180936, 91560, 29890, 5190, 240, 1
Offset: 1
Triangle T(n,k) (with n >= 1 and 0 <= k <= n*(n-1)/2) begins as follows:
1;
1, 1;
1, 3, 6, 1;
1, 6, 27, 60, 66, 24, 1;
1, 10, 75, 350, 1120, 2130, 2595, 1730, 690, 80, 1;
...
Showing 1-7 of 7 results.
Comments