cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239567 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.

Original entry on oeis.org

1, 3, 6, 6, 1, 10, 27, 21, 1, 15, 75, 151, 114, 27, 1, 21, 165, 615, 1137, 999, 353, 27, 28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2, 36, 546, 4571, 23265, 74811, 153194, 196899, 153072, 67229, 14727, 1257, 28, 45, 882, 9926, 71211, 342042, 1124820
Offset: 1

Views

Author

Heinrich Ludwig, Mar 21 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A239438(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no two of them are adjacent is given by A239438(n).
Row n is the coefficients of the independence polynomial of the triangular grid graph, omitting x^0 coefficients. - Eric W. Weisstein, Nov 11 2016

Examples

			Triangle begins:
   1;
   3;
   6,   6,    1;
  10,  27,   21,    1;
  15,  75,  151,  114,    27,     1;
  21, 165,  615, 1137,   999,   353,   27;
  28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2;
...
There is T(10, 19) = 1 way to place 19 points (X) on a grid of side 10 under to the condition mentioned above:
               X
              . .
             . X .
            X . . X
           . . X . .
          . X . . X .
         X . . X . . X
        . . X . . X . .
       . X . . X . . X .
      X . . X . . X . . X
This pattern seems to be the densest packing for all n == 1 (mod 3) and n >= 10.
From _Eric W. Weisstein_, Nov 11 2016: (Start)
Independence polynomials of the n-triangular grid graphs for n = 1, 2, ...:
1 + 3*x,
1 + 6*x + 6*x^2 + x^3,
1 + 10*x + 27*x^2 + 21*x^3 + x^4,
1 + 15*x + 75*x^2 + 151*x^3 + 114*x^4 + 27*x^5 + x^6,
...
(End)
		

Crossrefs

Column 1 is A000217,
Column 2 is A239568,
Column 3 is A239569,
Column 4 is A239570,
Column 5 is A239571,
Column 6 is A282998.
Row sums are A027740(n)-1.

A241765 a(n) = n*(n + 1)*(n + 2)*(3*n + 17)/24.

Original entry on oeis.org

0, 5, 23, 65, 145, 280, 490, 798, 1230, 1815, 2585, 3575, 4823, 6370, 8260, 10540, 13260, 16473, 20235, 24605, 29645, 35420, 41998, 49450, 57850, 67275, 77805, 89523, 102515, 116870, 132680, 150040, 169048, 189805, 212415, 236985, 263625, 292448
Offset: 0

Views

Author

Bruno Berselli, Apr 28 2014

Keywords

Comments

Equivalently, Sum_{i=0..n} (i+4)*A000217(i).
Sequences of the type Sum_{i=0..n} (i+k)*A000217(i):
k = 0, A001296: 0, 1, 7, 25, 65, 140, 266, 462, ...
k = 1, A000914: 0, 2, 11, 35, 85, 175, 322, 546, ...
k = 2, A050534: 0, 3, 15, 45, 105, 210, 378, 630, ... (deleting two 0)
k = 3, A215862: 0, 4, 19, 55, 125, 245, 434, 714, ...
k = 4, a(n): 0, 5, 23, 65, 145, 280, 490, 798, ...
k = 5, A239568: 0, 6, 27, 75, 165, 315, 546, 882, ...
Antidiagonal sums (without 0) give A034263: 1, 9, 39, 119, 294, ...
Diagonal: 1, 11, 45, 125, 280, 546, ... is A051740.
Also: k = -1 gives A050534 deleting a 0; k = -2 gives 0 followed by A059302.
After 0, partial sums of A212343 and third column of A118788.
This sequence is even related to A005286 by a(n) = n*A005286(n) - Sum_{i=0..n-1} A005286(i).

Examples

			a(7) = 4*0 + 5*1 + 6*3 + 7*6 + 8*10 + 9*15 + 10*21 + 11*28 = 798.
		

Crossrefs

Cf. similar sequences A000914, A001296, A050534, A059302, A215862, A239568 (see table in Comments lines).

Programs

  • Magma
    /* By first comment: */ k:=4; A000217:=func; [&+[(i+k)*A000217(i): i in [0..n]]: n in [0..40]];
    
  • Maple
    A241765:=n->n*(n + 1)*(n + 2)*(3*n + 17)/24; seq(A241765(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
  • Mathematica
    Table[n (n + 1) (n + 2) (3 n + 17)/24, {n, 0, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 23, 65, 145}, 40]
    CoefficientList[Series[x (5 - 2 x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
  • Maxima
    makelist(coeff(taylor(x*(5-2*x)/(1-x)^5, x, 0, n), x, n), n, 0, 40);
    
  • PARI
    a(n)=n*(n+1)*(n+2)*(3*n+17)/24 \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(5-2*x)/(1-x)^5)) \\ Altug Alkan, Apr 10 2016
  • Sage
    [n*(n+1)*(n+2)*(3*n+17)/24 for n in (0..40)]
    

Formula

G.f.: x*(5 - 2*x)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A227342(A055998(n+1)).
a(n) = Sum_{j=0..n+2} (-1)^(n-j)*binomial(-j,-n-2)*S1(j,n), S1 Stirling cycle numbers A132393. - Peter Luschny, Apr 10 2016

A239569 Number of ways to place 3 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 21, 151, 615, 1845, 4571, 9926, 19566, 35805, 61765, 101541, 160381, 244881, 363195, 525260, 743036, 1030761, 1405221, 1886035, 2495955, 3261181, 4211691, 5381586, 6809450, 8538725, 10618101, 13101921, 16050601, 19531065, 23617195, 28390296, 33939576
Offset: 2

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored, see A239573.

Crossrefs

Cf. A239567, A239573, A239568 (2 points), A239570 (4 points), A239571 (5 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-3*n+2)*(n^4+6*n^3-23*n^2-92*n+264)/48: n in [2..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[- x (11 x^4 - 36 x^3 + 25 x^2 + 14 x + 1)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,21,151,615,1845,4571},50] (* Harvey P. Dale, Aug 08 2023 *)
  • PARI
    concat(0, Vec(-x^3*(11*x^4-36*x^3+25*x^2+14*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n-1)*(n-2)*(n^4+6*n^3-23*n^2-92*n+264)/48.
G.f.: -x^3*(11*x^4-36*x^3+25*x^2+14*x+1) / (x-1)^7. - Colin Barker, Mar 22 2014

A239570 Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
Offset: 3

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored see A239574.

Crossrefs

Cf. A239567, A239574, A239568 (2 points), A239569 (3 points), A239571 (5 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,114,1137,6100,23265,71211,186739,436437},30] (* Harvey P. Dale, May 28 2025 *)
  • PARI
    concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n-2)*(n-3)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2+4040*n-11904)/384.
G.f.: x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1) / (x-1)^9. - Colin Barker, Mar 22 2014

A239571 Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 27, 999, 11565, 74811, 342042, 1239525, 3799488, 10259640, 25076952, 56552364, 119324403, 238062357, 452774595, 826245798, 1454229216, 2479147536, 4108199481, 6636929805, 10479498849, 16207085223, 24596072424, 36687908235, 53862785520, 77929575480
Offset: 3

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored see A239575.

Crossrefs

Cf. A239567, A239575, A239568 (2 points), A239569 (3 points), A239570 (4 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
  • PARI
    concat([0,0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n -3) * (n -4) * (n^8 +12*n^7 -58*n^6 -860*n^5 +2141*n^4 +23728*n^3 -61316*n^2 -244928*n +770880)/3840.
G.f.: -3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9) / (x-1)^11. - Colin Barker, Mar 22 2014

A282998 Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored, see A279446.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A279446, A239567, A239568 (2 points), A239569 (3 points), A239570 (4 points), A239571 (5 points).

Programs

  • Maple
    A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
  • Mathematica
    Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080 for n>=4.
G.f.: x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13. - Colin Barker, Feb 26 2017

A368569 Irregular triangle read by rows: T(n,k) is the number of essential graphs with n nodes and k (directed or undirected) edges (n >= 1, 0 <= k <= n*(n-1)/2).

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 1, 1, 6, 27, 60, 66, 24, 1, 1, 10, 75, 350, 1120, 2130, 2595, 1730, 690, 80, 1, 1, 15, 165, 1235, 6930, 27882, 79825, 162315, 236490, 245150, 180936, 91560, 29890, 5190, 240, 1
Offset: 1

Author

Moritz Schauer, Feb 06 2024

Keywords

Examples

			Triangle T(n,k) (with n >= 1 and 0 <= k <= n*(n-1)/2) begins as follows:
  1;
  1,  1;
  1,  3,  6,   1;
  1,  6, 27,  60,   66,   24,    1;
  1, 10, 75, 350, 1120, 2130, 2595, 1730, 690, 80, 1;
  ...
		

Crossrefs

Row sums give A007984.
Row lengths give A000124.
Column k=1 is A000217.
Column k=2 is A239568.
Showing 1-7 of 7 results.