A239567
Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.
Original entry on oeis.org
1, 3, 6, 6, 1, 10, 27, 21, 1, 15, 75, 151, 114, 27, 1, 21, 165, 615, 1137, 999, 353, 27, 28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2, 36, 546, 4571, 23265, 74811, 153194, 196899, 153072, 67229, 14727, 1257, 28, 45, 882, 9926, 71211, 342042, 1124820
Offset: 1
Triangle begins:
1;
3;
6, 6, 1;
10, 27, 21, 1;
15, 75, 151, 114, 27, 1;
21, 165, 615, 1137, 999, 353, 27;
28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2;
...
There is T(10, 19) = 1 way to place 19 points (X) on a grid of side 10 under to the condition mentioned above:
X
. .
. X .
X . . X
. . X . .
. X . . X .
X . . X . . X
. . X . . X . .
. X . . X . . X .
X . . X . . X . . X
This pattern seems to be the densest packing for all n == 1 (mod 3) and n >= 10.
From _Eric W. Weisstein_, Nov 11 2016: (Start)
Independence polynomials of the n-triangular grid graphs for n = 1, 2, ...:
1 + 3*x,
1 + 6*x + 6*x^2 + x^3,
1 + 10*x + 27*x^2 + 21*x^3 + x^4,
1 + 15*x + 75*x^2 + 151*x^3 + 114*x^4 + 27*x^5 + x^6,
...
(End)
- Heinrich Ludwig, Table of n, a(n) for n = 1..136
- Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
A239568
Number of ways to place 2 points on a triangular grid of side n so that they are not adjacent.
Original entry on oeis.org
0, 6, 27, 75, 165, 315, 546, 882, 1350, 1980, 2805, 3861, 5187, 6825, 8820, 11220, 14076, 17442, 21375, 25935, 31185, 37191, 44022, 51750, 60450, 70200, 81081, 93177, 106575, 121365, 137640, 155496, 175032, 196350, 219555, 244755, 272061, 301587, 333450, 367770
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- M. J. Hay, J. Schiff, N. J. Fisch, Maximal energy extraction under discrete diffusive exchange, arXiv preprint arXiv:1508.03499, 2015
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)
Regarding the third formula, see similar sequences listed in
A241765.
A239569
Number of ways to place 3 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 21, 151, 615, 1845, 4571, 9926, 19566, 35805, 61765, 101541, 160381, 244881, 363195, 525260, 743036, 1030761, 1405221, 1886035, 2495955, 3261181, 4211691, 5381586, 6809450, 8538725, 10618101, 13101921, 16050601, 19531065, 23617195, 28390296, 33939576
Offset: 2
-
[(n^2-3*n+2)*(n^4+6*n^3-23*n^2-92*n+264)/48: n in [2..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[- x (11 x^4 - 36 x^3 + 25 x^2 + 14 x + 1)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,21,151,615,1845,4571},50] (* Harvey P. Dale, Aug 08 2023 *)
-
concat(0, Vec(-x^3*(11*x^4-36*x^3+25*x^2+14*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Mar 22 2014
A239570
Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1)
-
[(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,114,1137,6100,23265,71211,186739,436437},30] (* Harvey P. Dale, May 28 2025 *)
-
concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
A239571
Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 27, 999, 11565, 74811, 342042, 1239525, 3799488, 10259640, 25076952, 56552364, 119324403, 238062357, 452774595, 826245798, 1454229216, 2479147536, 4108199481, 6636929805, 10479498849, 16207085223, 24596072424, 36687908235, 53862785520, 77929575480
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)
-
[(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
-
CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
-
concat([0,0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ Colin Barker, Mar 22 2014
A279446
Number of non-equivalent (mod D_3) ways to place 6 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 1, 66, 2096, 25676, 187984, 983172, 4073312, 14196011, 43309138, 118818916, 298926225, 699619679, 1540212590, 3217045155, 6419240369, 12304959047, 22763742133, 40797668697, 71065355815, 120643462032, 200077436639, 324808463585, 517088445952, 808515893580
Offset: 3
There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
X
. .
X . X
. . . .
X . X . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,-17,8,36,-7,-68,-18,113,52,-126,-92,92,126,-52,-113,18,68,7,-36,-8,17,0,-4,1).
-
Table[Boole[n > 4] ((n^12 + 6 n^11 - 195 n^10 - 670 n^9 + 17455 n^8 + 13426 n^7 - 835256 n^6 + 1246240 n^5 + 19563664 n^4 - 68181792 n^3 - 131524224 n^2 + 969500160 n - 1298903040)/276480 + Boole[OddQ@ n] (162 n^5 - 715 n^4 - 4480 n^3 + 21955 n^2 + 1108 n - 41685)/30720 + Boole[Mod[n, 3] == 1] (n^2 + n - 25)/27), {n, 3, 28}] (* Michael De Vlieger, Feb 26 2017 *)
-
concat(vector(2), Vec(x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3) + O(x^30))) \\ Colin Barker, Feb 26 2017
Showing 1-6 of 6 results.
Comments