cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A239572 Triangle T(n, k) = Numbers of non-equivalent (mod D_3) ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 16, 32, 24, 7, 1, 5, 32, 113, 200, 176, 66, 6, 7, 60, 329, 1053, 1976, 2096, 1162, 302, 34, 2, 8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7, 10, 160, 1702, 11988, 57275, 187984, 425329, 658608, 684671, 462519
Offset: 1

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Triangle T(n, k) is irregularly shaped: 1 <= k <= A239438(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no two of them are adjacent is given by A239438(n).
Without the restriction "non-equivalent (mod D_3)" numbers are given by A239567.

Examples

			Triangle begins
  1;
  1;
  2,   2,   1;
  3,   6,   6,    1;
  4,  16,  32,   24,     7,     1;
  5,  32, 113,  200,   176,    66,     6;
  7,  60, 329, 1053,  1976,  2096,  1162,   302,    34,    2;
  8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7;
		

Crossrefs

Column 1 is A001399,
Column 2 is A032091,
Column 3 is A239573,
Column 4 is A239574,
Column 5 is A239575,
Column 6 is A279446.

A239568 Number of ways to place 2 points on a triangular grid of side n so that they are not adjacent.

Original entry on oeis.org

0, 6, 27, 75, 165, 315, 546, 882, 1350, 1980, 2805, 3861, 5187, 6825, 8820, 11220, 14076, 17442, 21375, 25935, 31185, 37191, 44022, 51750, 60450, 70200, 81081, 93177, 106575, 121365, 137640, 155496, 175032, 196350, 219555, 244755, 272061, 301587, 333450, 367770
Offset: 2

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Crossrefs

Cf. A239567, A032091, A239569 (3 points), A239570 (4 points), A239571 (5 points), A282998 (6 points).
Regarding the third formula, see similar sequences listed in A241765.

Programs

  • PARI
    concat(0, Vec(3*x^3*(x-2)/(x-1)^5 + O(x^100))) \\ Colin Barker, Mar 22 2014

Formula

a(n) = n*(n-1)*(n-2)*(n+5)/8.
G.f.: 3*x^3*(x-2) / (x-1)^5. - Colin Barker, Mar 22 2014
a(n) = Sum_{i=0..n} (i+5)*A000217(i). - Bruno Berselli, Apr 29 2014
a(n) = t(t(n,k),n) + n, where t(n,k) = n*(n+1)/2 + k*n and t(n,1) = A000096(n). - Bruno Berselli, Feb 28 2017

A239569 Number of ways to place 3 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 21, 151, 615, 1845, 4571, 9926, 19566, 35805, 61765, 101541, 160381, 244881, 363195, 525260, 743036, 1030761, 1405221, 1886035, 2495955, 3261181, 4211691, 5381586, 6809450, 8538725, 10618101, 13101921, 16050601, 19531065, 23617195, 28390296, 33939576
Offset: 2

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored, see A239573.

Crossrefs

Cf. A239567, A239573, A239568 (2 points), A239570 (4 points), A239571 (5 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-3*n+2)*(n^4+6*n^3-23*n^2-92*n+264)/48: n in [2..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[- x (11 x^4 - 36 x^3 + 25 x^2 + 14 x + 1)/(x - 1)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,21,151,615,1845,4571},50] (* Harvey P. Dale, Aug 08 2023 *)
  • PARI
    concat(0, Vec(-x^3*(11*x^4-36*x^3+25*x^2+14*x+1)/(x-1)^7 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n-1)*(n-2)*(n^4+6*n^3-23*n^2-92*n+264)/48.
G.f.: -x^3*(11*x^4-36*x^3+25*x^2+14*x+1) / (x-1)^7. - Colin Barker, Mar 22 2014

A239570 Number of ways to place 4 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 114, 1137, 6100, 23265, 71211, 186739, 436437, 932850, 1856305, 3483546, 6224439, 10668112, 17640000, 28271370, 44083006, 67084839, 99893412, 145869175, 209275710, 295463091, 411077689, 564300837, 765118875, 1025627200, 1360371051, 1786725864, 2325320137
Offset: 3

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored see A239574.

Crossrefs

Cf. A239567, A239574, A239568 (2 points), A239569 (3 points), A239571 (5 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-5*n+6)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2 +4040*n-11904)/384: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[x (38 x^6 - 156 x^5 + 153 x^4 + 113 x^3 - 147 x^2 - 105 x - 1)/(x - 1)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,114,1137,6100,23265,71211,186739,436437},30] (* Harvey P. Dale, May 28 2025 *)
  • PARI
    concat(0, Vec(x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1)/(x-1)^9 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n-2)*(n-3)*(n^6+9*n^5-39*n^4-353*n^3+950*n^2+4040*n-11904)/384.
G.f.: x^4*(38*x^6-156*x^5+153*x^4+113*x^3-147*x^2-105*x-1) / (x-1)^9. - Colin Barker, Mar 22 2014

A239571 Number of ways to place 5 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 27, 999, 11565, 74811, 342042, 1239525, 3799488, 10259640, 25076952, 56552364, 119324403, 238062357, 452774595, 826245798, 1454229216, 2479147536, 4108199481, 6636929805, 10479498849, 16207085223, 24596072424, 36687908235, 53862785520, 77929575480
Offset: 3

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored see A239575.

Crossrefs

Cf. A239567, A239575, A239568 (2 points), A239569 (3 points), A239570 (4 points), A282998 (6 points).

Programs

  • Magma
    [(n^2-7*n+12)*(n^8+12*n^7-58*n^6-860*n^5+2141*n^4 +23728*n^3-61316*n^2-244928*n+770880)/3840: n in [3..40]]; // Vincenzo Librandi, Mar 23 2014
  • Mathematica
    CoefficientList[Series[- 3 x^2 (40 x^8 - 185 x^7 + 198 x^6 + 213 x^5 - 243 x^4 - 638 x^3 + 687 x^2 + 234 x + 9)/(x - 1)^11, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 23 2014 *)
  • PARI
    concat([0,0], Vec(-3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9)/(x-1)^11 + O(x^100))) \\ Colin Barker, Mar 22 2014
    

Formula

a(n) = (n -3) * (n -4) * (n^8 +12*n^7 -58*n^6 -860*n^5 +2141*n^4 +23728*n^3 -61316*n^2 -244928*n +770880)/3840.
G.f.: -3*x^5*(40*x^8-185*x^7+198*x^6+213*x^5-243*x^4-638*x^3+687*x^2+234*x+9) / (x-1)^11. - Colin Barker, Mar 22 2014

A282998 Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3

Views

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored, see A279446.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A279446, A239567, A239568 (2 points), A239569 (3 points), A239570 (4 points), A239571 (5 points).

Programs

  • Maple
    A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
  • Mathematica
    Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080 for n>=4.
G.f.: x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13. - Colin Barker, Feb 26 2017

A239438 Maximal number of points that can be placed on a triangular grid of side n so that there is no pair of adjacent points.

Original entry on oeis.org

1, 1, 3, 4, 6, 7, 10, 12, 15, 19, 22, 26, 31, 35, 40, 46, 51, 57, 64, 70, 77, 85, 92, 100, 109, 117, 126, 136, 145, 155, 166, 176, 187, 199, 210, 222, 235, 247, 260, 274, 287, 301, 316, 330, 345, 361, 376, 392, 409
Offset: 1

Views

Author

Heinrich Ludwig, Mar 18 2014

Keywords

Comments

In other words, the independence number of the (n-1)-triangular grid graph.
Apart from a(3) and a(5) same as A007997(n+4) and A058212(n+2). - Eric W. Weisstein, Jun 14 2017
Also the independence number of the n-triangular honeycomb king graph. - Eric W. Weisstein, Sep 06 2017

Examples

			On a triangular grid of side 5 at most a(5) = 6 points (X) can be placed so that there is no pair of adjacent points.
      X
     . .
    X . X
   . . . .
  X . X . X
		

Crossrefs

Programs

  • Mathematica
    Table[1/18 (Piecewise[{{28, n == 2 || n == 4}}, 10] + 3 n (3 + n) + 8 Cos[(2 n Pi)/3]), {n, 0, 20}] (* Eric W. Weisstein, Jun 14 2017 *)
  • PARI
    Vec(x*(x^9-2*x^8+2*x^7-3*x^6+3*x^5-2*x^4+2*x^3-2*x^2+x-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Feb 08 2015

Formula

a(n) = ceiling(n(n+1)/6) for n > 5, see Geramita, Gregory, & Roberts theorem 5.4. - Charles R Greathouse IV, Dec 04 2014
G.f.: x*(x^9-2*x^8+2*x^7-3*x^6+3*x^5-2*x^4+2*x^3-2*x^2+x-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Feb 08 2015

Extensions

Extended by Charles R Greathouse IV, Dec 04 2014

A243211 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 107, 128, 63, 10, 1, 15, 105, 428, 1062, 1566, 1276, 507, 69, 1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1, 1, 28, 378, 3198, 18591, 77124, 231090, 498097, 759117, 792942, 540361, 222597, 49053
Offset: 1

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  107,  128,    63,    10,
  1, 15, 105,  428, 1062,  1566,  1276,   507,    69,
  1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243207, A084546, A234251, A239567, A240439, A194136, A000217 (column 2), A050534 (column 3), A243212 (column 4), A243213 (column 5), A243214 (column 6).

A027740 Number of independent subsets of nodes in graph formed from n-fold subdivision of triangle.

Original entry on oeis.org

1, 2, 4, 14, 60, 384, 3318, 40638, 689636, 16383974, 542420394, 25075022590, 1617185558560, 145563089994148, 18283036276489970, 3204638749437865046, 783848125594781710150, 267554112823378352976752
Offset: 0

Views

Author

Keywords

Comments

In other words, number of independent vertex sets (and vertex covers) in the (n-1)-triangular grid graph. - Eric W. Weisstein, Jun 14 2017
Number of planar n X n X n binary triangular grids with no more than 1 one in any similarly oriented 2 X 2 X 2 subtriangle. - R. H. Hardin, Dec 27 2008

Crossrefs

A358532 a(n) is the row position of the next open point in the structure generated by adding the largest diamond possible at the next open point on a triangular grid of side n. See Comments and Example sections for more details.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 1, 3, 7, 1, 3, 6, 4, 10, 1, 9, 4, 7, 9, 5, 14, 1, 11, 5, 7, 8, 11, 14, 19, 1, 6, 6, 24, 9, 14, 20, 1, 8, 8, 8, 20, 8, 19, 24, 30, 15, 19, 19, 19, 27, 1, 19, 15, 16, 20, 28, 8, 39, 11, 24, 1, 11, 16, 26, 28, 29, 30, 39, 50, 20, 31, 32, 33
Offset: 1

Views

Author

John Tyler Rascoe, Nov 20 2022

Keywords

Comments

A structure of diamonds is built up successively by adding the largest possible diamond to the next open point within a triangular grid of side n. Each new diamond is added to the preceding structure of diamonds. At each step n, a new row of n open points is first added, extending the triangular grid.
Then the next open point is defined as the first open point encountered when the triangle is read by rows starting from the top row. a(n) is then the row position of the next open point.
Finally, starting at this open point the largest diamond that does not overlap any previous diamonds and fits within the triangular grid is added. Each diamond of side length k must cover exactly k^2 points, with the top corner on an open point. The points covered by the added diamond are then considered closed.
Is there a pattern for the values of n where a(n) = 1?

Examples

			Here zeros are the open points; closed points covered by the n-th diamond are replaced with n.
  ---------------------
  n=4       1          First a new row of 4 open points is added.
           2 3         Then the next open point is T(3,1) so a(4) = 1.
          4 0 0        Finally, the largest diamond fitting at T(3,1) is 1.
         0 0 0 0
  ---------------------
  n=5       1          First a new row of 5 open points is added.
           2 3         Then the next open point is T(3,2) so a(5) = 2.
          4 5 0        Finally, the largest diamond fitting at T(3,2) is 2.
         0 5 5 0
        0 0 5 0 0
  ---------------------
  n=6       1          First a new row of 6 open points is added.
           2 3         Then the next open point is T(3,3) so a(6) = 3.
          4 5 6        Finally, the largest diamond fitting at T(3,3) is 1.
         0 5 5 0
        0 0 5 0 0
       0 0 0 0 0 0
		

Crossrefs

Programs

  • Python
    # see linked program
Showing 1-10 of 10 results.