A032091
Number of reversible strings with n-1 beads of 2 colors. 4 beads are black. String is not palindromic.
Original entry on oeis.org
2, 6, 16, 32, 60, 100, 160, 240, 350, 490, 672, 896, 1176, 1512, 1920, 2400, 2970, 3630, 4400, 5280, 6292, 7436, 8736, 10192, 11830, 13650, 15680, 17920, 20400, 23120, 26112, 29376, 32946, 36822, 41040, 45600, 50540, 55860, 61600, 67760, 74382, 81466, 89056
Offset: 6
From _Petros Hadjicostas_, May 19 2018: (Start)
For n=6, we have the following reversible non-palindromic compositions with 5 parts of n: 1+1+1+1+2 (= 2+1+1+1+1) and 1+1+1+2+1 (= 1+2+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 4 black balls and n-5=1 white balls: BBBBW (= WBBBB) and BBBWB (= BWBBB).
For n=7, we get the following 6 compositions and 6 corresponding strings:
1+1+1+1+3 <-> BBBBWW
1+1+1+3+1 <-> BBBWWB
1+1+1+2+2 <-> BBBWBW
1+1+2+1+2 <-> BBWBBW
1+1+2+2+1 <-> BBWBWB
1+2+1+1+2 <-> BWBBBW
(End)
- Colin Barker, Table of n, a(n) for n = 6..1000
- C. G. Bower, Transforms (2)
- Hamzeh Mujahed, Benedek Nagy, Hyper-Wiener Index on Rows of Unit Cells of the BCC Grid, Comptes rendus de l’Académie bulgare des Sciences, Tome 71, No 5, 2018, 675-684. See p. 8.
- Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74 [broken link].
- Elizabeth Wilmer, Notes on Stephan's conjectures 72, 73 and 74 [cached copy].
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1)
-
Table[If[EvenQ[n],(n^4-10n^3+32n^2-32n)/48,(n^4-10n^3+32n^2-38n+15)/48], {n,6,50}] (* or *)
LinearRecurrence[{3,-1,-5,5,1,-3,1},{2,6,16,32,60,100,160},50] (* Harvey P. Dale, Apr 11 2016 *)
CoefficientList[Series[-2/((x - 1)^5 (x + 1)^2), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 20 2018 *)
-
A032091(n)=polcoeff(2/(1-x)^5/(1+x)^2+O(x^(n-5)),n-6)
A032091(n)=((n-5)*(n-3)*(n-1)^2+if(n%2==0,6*n-15))/48 \\ M. F. Hasler, May 01 2009
A239567
Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.
Original entry on oeis.org
1, 3, 6, 6, 1, 10, 27, 21, 1, 15, 75, 151, 114, 27, 1, 21, 165, 615, 1137, 999, 353, 27, 28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2, 36, 546, 4571, 23265, 74811, 153194, 196899, 153072, 67229, 14727, 1257, 28, 45, 882, 9926, 71211, 342042, 1124820
Offset: 1
Triangle begins:
1;
3;
6, 6, 1;
10, 27, 21, 1;
15, 75, 151, 114, 27, 1;
21, 165, 615, 1137, 999, 353, 27;
28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2;
...
There is T(10, 19) = 1 way to place 19 points (X) on a grid of side 10 under to the condition mentioned above:
X
. .
. X .
X . . X
. . X . .
. X . . X .
X . . X . . X
. . X . . X . .
. X . . X . . X .
X . . X . . X . . X
This pattern seems to be the densest packing for all n == 1 (mod 3) and n >= 10.
From _Eric W. Weisstein_, Nov 11 2016: (Start)
Independence polynomials of the n-triangular grid graphs for n = 1, 2, ...:
1 + 3*x,
1 + 6*x + 6*x^2 + x^3,
1 + 10*x + 27*x^2 + 21*x^3 + x^4,
1 + 15*x + 75*x^2 + 151*x^3 + 114*x^4 + 27*x^5 + x^6,
...
(End)
- Heinrich Ludwig, Table of n, a(n) for n = 1..136
- Stan Wagon, Graph Theory Problems from Hexagonal and Traditional Chess, The College Mathematics Journal, Vol. 45, No. 4, September 2014, pp. 278-287
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Triangular Grid Graph
A239573
Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2
There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4:
. X X X X X
. X . . . . . . . . . .
X . . X . X X . . X . . . X . . . .
. . X . . . . . . . X . . . . X . . . X X . . X
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1)
A239574
Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3
There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
X
. .
. X .
X . . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1)
-
Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)
A239575
Number of non-equivalent (mod D_3) ways to place 5 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 7, 176, 1976, 12565, 57275, 207018, 634166, 1711262, 4181915, 9428657, 19892816, 39684027, 75473209, 137721045, 242391212, 413215132, 684733527, 1106194950, 1746637600, 2701244609, 4099429895, 6114748948, 8977257362, 12988406970, 18539308619, 26132434991
Offset: 3
There are a(5) = 7 non-equivalent ways to place 5 points (x) on a triangular grid of side 5. These are:
x x . x
. . . . . . . .
x . x x . x x . x . x .
. . . . . . . . . . . . . . . .
x . . . x . x . x . x . x . x x . x . x
.
x x x
. . . . . .
. x . . x . x . x
x . . x x . . . . . . .
. . x . . . . x . x x . . x .
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-10,-10,50,-34,-66,110,0,-110,66,34,-50,10,10,-6,1)
-
Table[(n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + (1-(-1)^n)/2*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536,{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 31 2014 *)
Drop[CoefficientList[Series[x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11*(1+x)^5)), {x, 0, 20}], x], 3] (* Vaclav Kotesovec, Mar 31 2014 *)
A032093
Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.
Original entry on oeis.org
3, 12, 40, 100, 226, 452, 848, 1484, 2485, 3976, 6160, 9240, 13524, 19320, 27072, 37224, 50391, 67188, 88440, 114972, 147862, 188188, 237328, 296660, 367913, 452816, 553504, 672112, 811240, 973488, 1161984, 1379856
Offset: 8
From _Petros Hadjicostas_, May 19 2018: (Start)
For n=8, we have the following 3 reversible non-palindromic compositions with 7 parts of n: 1+1+1+1+1+1+2 (= 2+1+1+1+1+1+1), 1+1+1+1+1+2+1 (= 1+2+1+1+1+1+1), and 1+1+1+1+2+1+1 (= 1+1+2+1+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 6 black balls and n-7=1 white balls: BBBBBBW (= WBBBBBB), BBBBBWB (= BWBBBBB), and BBBBWBB (= BBWBBBB).
For n=9, we get the following 12 compositions and 12 corresponding strings:
1+1+1+1+1+1+3 <-> BBBBBBWW
1+1+1+1+1+3+1 <-> BBBBBWWB
1+1+1+1+3+1+1 <-> BBBBWWBB
1+1+1+1+1+2+2 <-> BBBBBWBW
1+1+1+1+2+1+2 <-> BBBBWBBW
1+1+1+2+1+1+2 <-> BBBWBBBW
1+1+2+1+1+1+2 <-> BBWBBBBW
1+2+1+1+1+1+2 <-> BWBBBBBW
1+1+1+1+2+2+1 <-> BBBBWBWB
1+1+1+2+1+2+1 <-> BBBWBBWB
1+1+2+1+1+2+1 <-> BBWBBBWB
1+1+1+2+2+1+1 <-> BBBWBWBB
(End)
- C. G. Bower, Transforms (2)
- Index entries for linear recurrences with constant coefficients, signature (4, -3, -8, 14, 0, -14, 8, 3, -4, 1).
A243207
Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1
The triangle begins:
1;
1, 1;
2, 4, 3, 1;
3, 10, 20, 25, 11, 3;
4, 22, 77, 186, 266, 221, 86, 14;
5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
.
x x
x . x
x . . x
x . . . x
. x x x x .
Cf.
A227308,
A243211,
A239572,
A234247,
A231655,
A243141,
A001399 (column 1),
A227327 (column 2),
A243208 (column 3),
A243209 (column 4),
A243210 (column 5).
A279446
Number of non-equivalent (mod D_3) ways to place 6 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 1, 66, 2096, 25676, 187984, 983172, 4073312, 14196011, 43309138, 118818916, 298926225, 699619679, 1540212590, 3217045155, 6419240369, 12304959047, 22763742133, 40797668697, 71065355815, 120643462032, 200077436639, 324808463585, 517088445952, 808515893580
Offset: 3
There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
X
. .
X . X
. . . .
X . X . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,-17,8,36,-7,-68,-18,113,52,-126,-92,92,126,-52,-113,18,68,7,-36,-8,17,0,-4,1).
-
Table[Boole[n > 4] ((n^12 + 6 n^11 - 195 n^10 - 670 n^9 + 17455 n^8 + 13426 n^7 - 835256 n^6 + 1246240 n^5 + 19563664 n^4 - 68181792 n^3 - 131524224 n^2 + 969500160 n - 1298903040)/276480 + Boole[OddQ@ n] (162 n^5 - 715 n^4 - 4480 n^3 + 21955 n^2 + 1108 n - 41685)/30720 + Boole[Mod[n, 3] == 1] (n^2 + n - 25)/27), {n, 3, 28}] (* Michael De Vlieger, Feb 26 2017 *)
-
concat(vector(2), Vec(x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3) + O(x^30))) \\ Colin Barker, Feb 26 2017
Showing 1-8 of 8 results.
Comments