cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A032091 Number of reversible strings with n-1 beads of 2 colors. 4 beads are black. String is not palindromic.

Original entry on oeis.org

2, 6, 16, 32, 60, 100, 160, 240, 350, 490, 672, 896, 1176, 1512, 1920, 2400, 2970, 3630, 4400, 5280, 6292, 7436, 8736, 10192, 11830, 13650, 15680, 17920, 20400, 23120, 26112, 29376, 32946, 36822, 41040, 45600, 50540, 55860, 61600, 67760, 74382, 81466, 89056
Offset: 6

Views

Author

Keywords

Comments

Also, number of 4-element subsets of the set {1,...,n-1} whose elements sum up to an odd integer, i.e., 4th column of the triangle A159916, cf. there. - M. F. Hasler, May 01 2009
Also, if the offset is changed to 3, so that a(3)=2, a(n) = number of non-equivalent (mod D_3) ways to place 2 indistinguishable points on a triangular grid of side n so that they are not adjacent. - Heinrich Ludwig, Mar 23 2014
Also, the number of binary strings of length n with exactly one pair of consecutive 0s and exactly three pairs of consecutive 1s. - Jeremy Dover, Jul 07 2016
From Petros Hadjicostas, May 19 2018: (Start)
Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms.
When k is odd and c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*(x/(1-x))*((x/(1-x))^{k-1} - (x^2/(1-x^2))^{(k-1)/2}). If (a_k(n): n >= 1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial(floor((n-1)/2), floor((n-k)/2))) for n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.)
In this sequence, k = 5, and (according to C. G. Bower) a(n) = a_{k=5}(n) is the number of reversible non-palindromic compositions of n with 5 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 is such a composition of n (with b_i >= 1), then it is equivalent to the composition n = b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n.
The fact that we are finding the BHK[5] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms).
In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has 4 black balls and n-5 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 = b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 4 black balls and n-5 white balls that are mirror images of each other.
Hence, for n >= 2, a(n) = a_{k=5}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 4 black balls and n-k = n-5 white balls. (Clearly, a(n) = a_{k=5}(n) > 0 only for n >= 6. For n=5, the composition 1+1+1+1+1, which corresponds to string BBBB, is discarded because it is palindromic.)
For k = 3 (an odd integer) we have a_k(n) = A002620(n-2) (for n >= 4), while for k = 7 (also an odd integer), we have a_k(n) = A032093(n) (for n >= 8).
For k = 4 (which is even), we have a_k(n) = A006584(n-2) (for n >= 5), while for k = 6 and k = 8 (which are also even integers), we get sequences A032092 and A032094, respectively. When k is even, the g.f. in these cases is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2, where C(x) = x/(1-x). The formula for a_k(n) (given above) needs to be modified as well.
(End)
The formula for a(n) for this sequence was Ralf Stephan's conjecture 73. It was solved by Elizabeth Wilmer (see Proposition 2 in one of the links below). There is a minor typo in the original conjecture. - Petros Hadjicostas, Jul 04 2018

Examples

			From _Petros Hadjicostas_, May 19 2018: (Start)
For n=6, we have the following reversible non-palindromic compositions with 5 parts of n: 1+1+1+1+2 (= 2+1+1+1+1) and 1+1+1+2+1 (= 1+2+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 4 black balls and n-5=1 white balls: BBBBW (= WBBBB) and BBBWB (= BWBBB).
For n=7, we get the following 6 compositions and 6 corresponding strings:
1+1+1+1+3 <-> BBBBWW
1+1+1+3+1 <-> BBBWWB
1+1+1+2+2 <-> BBBWBW
1+1+2+1+2 <-> BBWBBW
1+1+2+2+1 <-> BBWBWB
1+2+1+1+2 <-> BWBBBW
(End)
		

Crossrefs

a(n+6) = 2*A002624(n).
Fourth column of A274228. - Jeremy Dover, Jul 07 2016

Programs

  • Mathematica
    Table[If[EvenQ[n],(n^4-10n^3+32n^2-32n)/48,(n^4-10n^3+32n^2-38n+15)/48], {n,6,50}] (* or *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{2,6,16,32,60,100,160},50] (* Harvey P. Dale, Apr 11 2016 *)
    CoefficientList[Series[-2/((x - 1)^5 (x + 1)^2), {x, 0, 42}], x] (* Robert G. Wilson v, Jun 20 2018 *)
  • PARI
    A032091(n)=polcoeff(2/(1-x)^5/(1+x)^2+O(x^(n-5)),n-6)
    A032091(n)=((n-5)*(n-3)*(n-1)^2+if(n%2==0,6*n-15))/48 \\ M. F. Hasler, May 01 2009

Formula

"BHK[ 5 ]" (reversible, identity, unlabeled, 5 parts) transform of 1, 1, 1, 1, ...
From M. F. Hasler, May 01 2009: (Start)
G.f.: -2*x^6 / ((x-1)^5*(x+1)^2). [corrected by Colin Barker, Mar 07 2015]
a(n) = [(n-5)(n-3)(n-1)^2 + (6n-15) X[2Z](n)]/48, where X[2Z] is the characteristic function of 2Z.
(End)
From Colin Barker, Mar 07 2015: (Start)
a(n) = (n^4-10*n^3+32*n^2-32*n)/48 if n is even.
a(n) = (n^4-10*n^3+32*n^2-38*n+15)/48 if n is odd.
(End)
a(n) = (2*n^4 - 20*n^3 + 64*n^2 + 6*(-1)^n*n - 70*n - 15*(-1)^n + 15)/96. - Ilya Gutkovskiy, Jul 08 2016
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-5) - binomial(floor((n-1)/2) - floor((n-5)/2))).
G.f.: (1/2)*(x/(1-x))*((x/(1-x))^4 - (x^2/(1-x^2))^2).
(End)
a(n) = 2*A002624(n-6) - Robert G. Wilson v, Jun 20 2018

A239567 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.

Original entry on oeis.org

1, 3, 6, 6, 1, 10, 27, 21, 1, 15, 75, 151, 114, 27, 1, 21, 165, 615, 1137, 999, 353, 27, 28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2, 36, 546, 4571, 23265, 74811, 153194, 196899, 153072, 67229, 14727, 1257, 28, 45, 882, 9926, 71211, 342042, 1124820
Offset: 1

Views

Author

Heinrich Ludwig, Mar 21 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A239438(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no two of them are adjacent is given by A239438(n).
Row n is the coefficients of the independence polynomial of the triangular grid graph, omitting x^0 coefficients. - Eric W. Weisstein, Nov 11 2016

Examples

			Triangle begins:
   1;
   3;
   6,   6,    1;
  10,  27,   21,    1;
  15,  75,  151,  114,    27,     1;
  21, 165,  615, 1137,   999,   353,   27;
  28, 315, 1845, 6100, 11565, 12231, 6715, 1686, 150, 2;
...
There is T(10, 19) = 1 way to place 19 points (X) on a grid of side 10 under to the condition mentioned above:
               X
              . .
             . X .
            X . . X
           . . X . .
          . X . . X .
         X . . X . . X
        . . X . . X . .
       . X . . X . . X .
      X . . X . . X . . X
This pattern seems to be the densest packing for all n == 1 (mod 3) and n >= 10.
From _Eric W. Weisstein_, Nov 11 2016: (Start)
Independence polynomials of the n-triangular grid graphs for n = 1, 2, ...:
1 + 3*x,
1 + 6*x + 6*x^2 + x^3,
1 + 10*x + 27*x^2 + 21*x^3 + x^4,
1 + 15*x + 75*x^2 + 151*x^3 + 114*x^4 + 27*x^5 + x^6,
...
(End)
		

Crossrefs

Column 1 is A000217,
Column 2 is A239568,
Column 3 is A239569,
Column 4 is A239570,
Column 5 is A239571,
Column 6 is A282998.
Row sums are A027740(n)-1.

A239573 Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239569.

Examples

			There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4:
    .           X           X           X           X           X
   . X         . .         . .         . .         . .         . .
  X . .       X . X       X . .       X . .       . X .       . . .
. . X .     . . . .     . . X .     . . . X     . . . X     X . . X
		

Crossrefs

Cf. A239572, A239569, A032091 (2 points), A239574 (4 points), A239575 (5 points), A279446 (6 points).

Programs

  • PARI
    concat(0, Vec(-x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1)/((x -1)^7*(x +1)^3*(x^2 +x +1)) + O(x^100))) \\ Colin Barker, Mar 23 2014

Formula

a(n) = (n^6 + 3*n^5 - 39*n^4 + 10*n^3 + 456*n^2 - 1008*n + 576)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 5*n - 5)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: -x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1) / ((x -1)^7*(x +1)^3*(x^2 +x +1)). - Colin Barker, Mar 23 2014

A239574 Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239570.

Examples

			There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
      X
     . .
    . X .
   X . . X
		

Crossrefs

Cf. A239572, A239570, A032091 (2 points), A239573 (3 points), A239575 (5 points), A279446 (6 points).

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
    Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)

Formula

a(n) = (n^8 +4*n^7 -78*n^6 -104*n^5 +2556*n^4 -3152*n^3 -27280*n^2 +89664*n -78336)/2304 +IF(n == 1 mod 2)*(28*n^3 -54*n^2 -160*n +129)/768 +IF(n == 1 mod 3)*(n^2 +n -14)/18.
G.f.: x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3). - Vaclav Kotesovec, Mar 29 2014

A239575 Number of non-equivalent (mod D_3) ways to place 5 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 7, 176, 1976, 12565, 57275, 207018, 634166, 1711262, 4181915, 9428657, 19892816, 39684027, 75473209, 137721045, 242391212, 413215132, 684733527, 1106194950, 1746637600, 2701244609, 4099429895, 6114748948, 8977257362, 12988406970, 18539308619, 26132434991
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239571.

Examples

			There are a(5) = 7 non-equivalent ways to place 5 points (x) on a triangular grid of side 5. These are:
        x             x             .             x
       . .           . .           . .           . .
      x . x         x . x         x . x         . x .
     . . . .       . . . .       . . . .       . . . .
    x . . . x     . x . x .     x . x . x     x . x . x
.
        x             x             x
       . .           . .           . .
      . x .         . x .         x . x
     x . . x       x . . .       . . . .
    . . x . .     . . x . x     x . . x .
		

Crossrefs

Cf. A239572, A239571, A032091 (2 points), A239573 (3 points), A239574 (4 points), 279446 (6 points).

Programs

  • Mathematica
    Table[(n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + (1-(-1)^n)/2*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536,{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 31 2014 *)
    Drop[CoefficientList[Series[x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11*(1+x)^5)), {x, 0, 20}], x], 3] (* Vaclav Kotesovec, Mar 31 2014 *)

Formula

a(n) = (n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + IF(MOD(n,2) = 1)*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536.
G.f.: x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11 * (1+x)^5)). - Vaclav Kotesovec, Mar 31 2014

A032093 Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.

Original entry on oeis.org

3, 12, 40, 100, 226, 452, 848, 1484, 2485, 3976, 6160, 9240, 13524, 19320, 27072, 37224, 50391, 67188, 88440, 114972, 147862, 188188, 237328, 296660, 367913, 452816, 553504, 672112, 811240, 973488, 1161984, 1379856
Offset: 8

Views

Author

Keywords

Comments

From Petros Hadjicostas, May 19 2018: (Start)
Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n>=1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms.
When k is odd and c(n) = 1 for all n>=1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*(x/(1-x))*((x/(1-x))^{k-1} - (x^2/(1-x^2))^{(k-1)/2}). If (a_k(n): n>=1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial(floor((n-1)/2), floor((n-k)/2))) for n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.)
In this sequence, k = 7, and (according to C. G. Bower) a(n) = a_{k=7}(n) is the number of reversible non-palindromic compositions of n with 7 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 is such a composition of n (with b_i >=1), then it is equivalent to the composition n = b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n.
The fact that we are finding the BHK[7] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms).
In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has 6 black balls and n-7 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 = b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 6 black balls and n-7 white balls that are mirror images of each other.
Hence, for n>=2, a(n) = a_{k=7}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 6 black balls and n-k = n-7 white balls. (Clearly, a(n) = a_{k=7}(n) > 0 only for n >= 8. For n=7, the composition 1+1+1+1+1+1+1, which corresponds to string BBBBBB, is discarded because it is palindromic.)
(End)

Examples

			From _Petros Hadjicostas_, May 19 2018: (Start)
For n=8, we have the following 3 reversible non-palindromic compositions with 7 parts of n: 1+1+1+1+1+1+2 (= 2+1+1+1+1+1+1), 1+1+1+1+1+2+1 (= 1+2+1+1+1+1+1), and 1+1+1+1+2+1+1 (= 1+1+2+1+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 6 black balls and n-7=1 white balls: BBBBBBW (= WBBBBBB), BBBBBWB (= BWBBBBB), and BBBBWBB (= BBWBBBB).
For n=9, we get the following 12 compositions and 12 corresponding strings:
1+1+1+1+1+1+3 <-> BBBBBBWW
1+1+1+1+1+3+1 <-> BBBBBWWB
1+1+1+1+3+1+1 <-> BBBBWWBB
1+1+1+1+1+2+2 <-> BBBBBWBW
1+1+1+1+2+1+2 <-> BBBBWBBW
1+1+1+2+1+1+2 <-> BBBWBBBW
1+1+2+1+1+1+2 <-> BBWBBBBW
1+2+1+1+1+1+2 <-> BWBBBBBW
1+1+1+1+2+2+1 <-> BBBBWBWB
1+1+1+2+1+2+1 <-> BBBWBBWB
1+1+2+1+1+2+1 <-> BBWBBBWB
1+1+1+2+2+1+1 <-> BBBWBWBB
(End)
		

Crossrefs

Formula

"BHK[ 7 ]" (reversible, identity, unlabeled, 7 parts) transform of 1, 1, 1, 1, ...
Empirical G.f.: -x^8*(x^2+3)/((x-1)^7*(x+1)^3). - Colin Barker, Nov 24 2012
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-7) - binomial(floor((n-1)/2), floor((n-7)/2))) for n >= 8.
G.f.: (1/2)*(x/(1-x))*((x/(1-x))^6 - (x^2/(1-x^2))^3), which is the same as the g.f. given by Colin Barker above.
(End)

Extensions

Definition changed slightly by Harvey P. Dale, Oct 02 2017

A243207 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,   1;
  3, 10,  20,  25,   11,    3;
  4, 22,  77, 186,  266,  221,   86,   14;
  5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243211, A239572, A234247, A231655, A243141, A001399 (column 1), A227327 (column 2), A243208 (column 3), A243209 (column 4), A243210 (column 5).

A279446 Number of non-equivalent (mod D_3) ways to place 6 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 66, 2096, 25676, 187984, 983172, 4073312, 14196011, 43309138, 118818916, 298926225, 699619679, 1540212590, 3217045155, 6419240369, 12304959047, 22763742133, 40797668697, 71065355815, 120643462032, 200077436639, 324808463585, 517088445952, 808515893580
Offset: 3

Views

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are not counted. For numbers if they are to be counted see A282998.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A282998, A239572, A032091 (2 points), A239573 (3 points), A239574 (4 points), A239575 (5 points).

Programs

  • Mathematica
    Table[Boole[n > 4] ((n^12 + 6 n^11 - 195 n^10 - 670 n^9 + 17455 n^8 + 13426 n^7 - 835256 n^6 + 1246240 n^5 + 19563664 n^4 - 68181792 n^3 - 131524224 n^2 + 969500160 n - 1298903040)/276480 + Boole[OddQ@ n] (162 n^5 - 715 n^4 - 4480 n^3 + 21955 n^2 + 1108 n - 41685)/30720 + Boole[Mod[n, 3] == 1] (n^2 + n - 25)/27), {n, 3, 28}] (* Michael De Vlieger, Feb 26 2017 *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3) + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 835256*n^6 + 1246240*n^5 + 19563664*n^4 - 68181792*n^3 - 131524224*n^2 + 969500160*n - 1298903040)/276480 + IF(MOD(n, 2) = 1, 162*n^5 - 715*n^4 - 4480*n^3 + 21955*n^2 + 1108*n - 41685)/30720 + IF(MOD(n, 3) = 1, n^2 + n - 25)/27 for n>=4.
G.f.: x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3). - Colin Barker, Feb 26 2017
Showing 1-8 of 8 results.