cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243208 Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 3, 20, 77, 223, 552, 1196, 2380, 4388, 7657, 12710, 20301, 31297, 46892, 68426, 97674, 136596, 187713, 253770, 338217, 444773, 578018, 742852, 945210, 1191398, 1488949, 1845824, 2271415, 2775605, 3369930, 4066480, 4879238, 5822810, 6913947, 8170098, 9611127, 11257671
Offset: 2

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(-3 - 11*x - 17*x^2 - 13*x^3 - 14*x^4 - x^5 - 2*x^6 + x^7) / ((-1+x)^7 * (1+x)^3 * (1+x+x^2)), {x, 0, 50}], x],2] (* Vaclav Kotesovec, Jun 02 2014 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 - 2*n^3 - 48*n^2 + 48*n)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 9*n - 1)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: x^3*(-3 - 11*x - 17*x^2 - 13*x^3 - 14*x^4 - x^5 - 2*x^6 + x^7) / ((-1+x)^7 * (1+x)^3 * (1+x+x^2)). - Vaclav Kotesovec, Jun 02 2014
a(n) = 3*a(n-1) - 7*a(n-3) + 3*a(n-4) + 6*a(n-5) - 6*a(n-7) - 3*a(n-8) + 7*a(n-9) - 3*a(n-11) + a(n-12). - Vaclav Kotesovec, Jun 02 2014

A243209 Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

1, 25, 186, 881, 3146, 9264, 23810, 55058, 117205, 233135, 438544, 786541, 1354696, 2252202, 3630684, 5694984, 8718963, 13060515, 19184110, 27681103, 39300096, 54974216, 75861038, 103377456, 139251749, 185567453, 244828780, 320015885, 414665890, 532940080
Offset: 3

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^3*(1 + 22*x + 111*x^2 + 329*x^3 + 653*x^4 + 936*x^5 + 1146*x^6 + 1200*x^7 + 1150*x^8 + 900*x^9 + 650*x^10 + 286*x^11 + 131*x^12 + 28*x^13 + 19*x^14 - 5*x^15 + 3*x^16) / ((-1+x)^9 * (1+x)^4 * (1-x+x^2) * (1+x+x^2)^3), {x, 0, 40}], x],3] (* Vaclav Kotesovec, Jun 02 2014 *)

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 80*n^5 + 60*n^4 + 208*n^3 + 464*n^2 - 1152*n)/2304 + IF(MOD(n, 2) = 1)*(28*n^3 - 206*n^2 + 312*n + 33)/768 + IF(MOD(n, 3) = 1)*(n^2 - 2*n + 4)/18 + IF(MOD(n, 6) = 1)*(- 1/6).
G.f.: -x^3*(1 + 22*x + 111*x^2 + 329*x^3 + 653*x^4 + 936*x^5 + 1146*x^6 + 1200*x^7 + 1150*x^8 + 900*x^9 + 650*x^10 + 286*x^11 + 131*x^12 + 28*x^13 + 19*x^14 - 5*x^15 + 3*x^16) / ((-1+x)^9 * (1+x)^4 * (1-x+x^2) * (1+x+x^2)^3). - Vaclav Kotesovec, Jun 02 2014
a(n) = 3*a(n-1) - 6*a(n-3) + 6*a(n-5) + 8*a(n-6) - 12*a(n-7) - 9*a(n-8) + 13*a(n-9) + 6*a(n-10) - 6*a(n-11) - 13*a(n-12) + 9*a(n-13) + 12*a(n-14) - 8*a(n-15) - 6*a(n-16) + 6*a(n-18) - 3*a(n-20) + a(n-21). - Vaclav Kotesovec, Jun 02 2014

A243211 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 107, 128, 63, 10, 1, 15, 105, 428, 1062, 1566, 1276, 507, 69, 1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1, 1, 28, 378, 3198, 18591, 77124, 231090, 498097, 759117, 792942, 540361, 222597, 49053
Offset: 1

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  107,  128,    63,    10,
  1, 15, 105,  428, 1062,  1566,  1276,   507,    69,
  1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243207, A084546, A234251, A239567, A240439, A194136, A000217 (column 2), A050534 (column 3), A243212 (column 4), A243213 (column 5), A243214 (column 6).

A243210 Number of inequivalent (mod D_3) ways to place 5 points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 11, 266, 2344, 12907, 53307, 180876, 530654, 1391647, 3335627, 7426885, 15544434, 30867669, 58574800, 106838511, 188190111, 321383808, 533857914
Offset: 3

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 10*n^8 - 195*n^7)/23040 + O(n^6)
Showing 1-4 of 4 results.