cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243207 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,   1;
  3, 10,  20,  25,   11,    3;
  4, 22,  77, 186,  266,  221,   86,   14;
  5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243211, A239572, A234247, A231655, A243141, A001399 (column 1), A227327 (column 2), A243208 (column 3), A243209 (column 4), A243210 (column 5).

A243212 Number of ways to place 3 points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 15, 107, 428, 1282, 3198, 7022, 14020, 26000, 45445, 75665, 120960, 186802, 280028, 409052, 584088, 817392, 1123515, 1519575, 2025540, 2664530, 3463130, 4451722, 5664828, 7141472, 8925553, 11066237, 13618360, 16642850, 20207160, 24385720, 29260400, 34920992
Offset: 2

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,15,107,428,1282,3198,7022,14020]; [n le 8 select I[n] else 6*Self(n-1)-14*Self(n-2)+14*Self(n-3)-14*Self(n-5)+14*Self(n-6)-6*Self(n-7)+Self(n-8): n in [1..40]]; // Vincenzo Librandi, Jun 23 2015
  • Mathematica
    Table[Binomial[n (n + 1)/2, 3] - Floor[(n - 1) (n + 1) (2 n - 1)/8], {n, 2, 40}] (* Vincenzo Librandi, Jun 23 2015 *)
  • PARI
    concat(0, Vec(-x^3*(2*x^3-4*x^2+17*x+15)/((x-1)^7*(x+1)) + O(x^100))) \\ Colin Barker, Jun 09 2014
    

Formula

a(n) = C(n*(n+1)/2, 3) - floor((n-1)*(n+1)*(2*n-1)/8).
a(n) = C(n*(n+1)/2, 3) - A002717(n-1).
a(n) = (-3+3*(-1)^n+20*n+8*n^2-23*n^3-3*n^4+3*n^5+n^6)/48. - Colin Barker, Jun 09 2014
G.f.: -x^3*(2*x^3-4*x^2+17*x+15) / ((x-1)^7*(x+1)). - Colin Barker, Jun 09 2014

A243213 Number of ways to place 4 points on a triangular grid of side length n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

3, 128, 1062, 5160, 18591, 55113, 142005, 329045, 701160, 1395975, 2626953, 4713723, 8120322, 13503350, 21770766, 34153758, 52292385, 78337890, 115072320, 166048850, 235753353, 329791143, 455099307, 620189115, 835418766, 1113301553, 1468849515, 1919958285
Offset: 3

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Examples

			There are exactly a(3) = 3 ways to place 4 points (x) on a 3X3X3 grid, no three of them being vertices of an equilateral triangle:
      .            x            x
     x x          . x          x .
    x . x        x x .        . x x
		

Crossrefs

Programs

  • PARI
    Vec(x^3*(7*x^7-33*x^6-15*x^5-38*x^4-318*x^3-330*x^2-110*x-3)/((x-1)^9*(x+1)^3) + O(x^100)) \\ Colin Barker, Jun 09 2014

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 80*n^5 - 15*n^4 + 532*n^3 - 244*n^2 - 432*n)/384 + IF(MOD(n, 2) = 1)*(-n^2 - n + 12)/16.
G.f.: x^3*(7*x^7-33*x^6-15*x^5-38*x^4-318*x^3-330*x^2-110*x-3) / ((x-1)^9*(x+1)^3). - Colin Barker, Jun 09 2014

A243214 Number of ways to place 5 points on a triangular grid of side n, so that no three of them are vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 63, 1566, 13971, 77124, 319206, 1083723, 3181401, 8344854, 20006349, 44548227, 93248628, 185176866, 351410664, 640972980, 1129067352, 1928196432, 3203016813
Offset: 3

Views

Author

Heinrich Ludwig, Jun 10 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 10*n^8)/3840 + O(n^7)
Showing 1-4 of 4 results.