cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A239572 Triangle T(n, k) = Numbers of non-equivalent (mod D_3) ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 16, 32, 24, 7, 1, 5, 32, 113, 200, 176, 66, 6, 7, 60, 329, 1053, 1976, 2096, 1162, 302, 34, 2, 8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7, 10, 160, 1702, 11988, 57275, 187984, 425329, 658608, 684671, 462519
Offset: 1

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Triangle T(n, k) is irregularly shaped: 1 <= k <= A239438(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no two of them are adjacent is given by A239438(n).
Without the restriction "non-equivalent (mod D_3)" numbers are given by A239567.

Examples

			Triangle begins
  1;
  1;
  2,   2,   1;
  3,   6,   6,    1;
  4,  16,  32,   24,     7,     1;
  5,  32, 113,  200,   176,    66,     6;
  7,  60, 329, 1053,  1976,  2096,  1162,   302,    34,    2;
  8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7;
		

Crossrefs

Column 1 is A001399,
Column 2 is A032091,
Column 3 is A239573,
Column 4 is A239574,
Column 5 is A239575,
Column 6 is A279446.

A239568 Number of ways to place 2 points on a triangular grid of side n so that they are not adjacent.

Original entry on oeis.org

0, 6, 27, 75, 165, 315, 546, 882, 1350, 1980, 2805, 3861, 5187, 6825, 8820, 11220, 14076, 17442, 21375, 25935, 31185, 37191, 44022, 51750, 60450, 70200, 81081, 93177, 106575, 121365, 137640, 155496, 175032, 196350, 219555, 244755, 272061, 301587, 333450, 367770
Offset: 2

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Crossrefs

Cf. A239567, A032091, A239569 (3 points), A239570 (4 points), A239571 (5 points), A282998 (6 points).
Regarding the third formula, see similar sequences listed in A241765.

Programs

  • PARI
    concat(0, Vec(3*x^3*(x-2)/(x-1)^5 + O(x^100))) \\ Colin Barker, Mar 22 2014

Formula

a(n) = n*(n-1)*(n-2)*(n+5)/8.
G.f.: 3*x^3*(x-2) / (x-1)^5. - Colin Barker, Mar 22 2014
a(n) = Sum_{i=0..n} (i+5)*A000217(i). - Bruno Berselli, Apr 29 2014
a(n) = t(t(n,k),n) + n, where t(n,k) = n*(n+1)/2 + k*n and t(n,1) = A000096(n). - Bruno Berselli, Feb 28 2017

A032092 Number of reversible strings with n-1 beads of 2 colors. 5 beads are black. String is not palindromic.

Original entry on oeis.org

3, 9, 28, 60, 126, 226, 396, 636, 1001, 1491, 2184, 3080, 4284, 5796, 7752, 10152, 13167, 16797, 21252, 26532, 32890, 40326, 49140, 59332, 71253, 84903, 100688, 118608, 139128, 162248, 188496, 217872, 250971, 287793, 329004, 374604, 425334, 481194, 543004
Offset: 7

Views

Author

Keywords

Comments

If the offset is changed to 3, this is the 2nd Witt transform of A000217 [Moree]. - R. J. Mathar, Nov 08 2008
From Petros Hadjicostas, May 19 2018: (Start)
Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms.
When k is even and c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*((x/(1-x))^k - (x^2/(1-x^2))^{k/2}). If (a_k(n): n >= 1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial((n/2)-1, (n-k)/2)) for even n >= k+1 and a_k(n) = (1/2)*binomial(n-1, n-k) for odd n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.)
In this sequence, k = 6, and (according to C. G. Bower) a(n) = a_{k=6}(n) is the number of reversible non-palindromic compositions of n with 6 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 is such a composition of n (with b_i >= 1), then it is equivalent to the composition n = b_6 + b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n.
The fact that we are finding the BHK[6] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms).
In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has 5 black balls and n-6 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 = b_6 + b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 5 black balls and n-6 white balls that are mirror images of each other.
Hence, for n >= 2, a(n) = a_{k=6}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 5 black balls and n-k = n-6 white balls. (Clearly, a(n) = a_{k=6}(n) > 0 only for n >= 7.)
(End)

Examples

			From _Petros Hadjicostas_, May 19 2018: (Start)
For n=7, we have the following 3 reversible non-palindromic compositions with 6 parts of n: 1+1+1+1+1+2 (= 2+1+1+1+1+1), 1+1+1+1+2+1 (= 1+2+1+1+1+1), and 1+1+1+2+1+1 (= 1+1+2+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 5 black balls and n-6 = 1 white balls: BBBBBW (= WBBBBB), BBBBWB (= BWBBBB), and BBBWBB (= BBWBBB).
For n=8, we get the following 9 compositions and 9 corresponding strings:
1+1+1+1+1+3 <-> BBBBBWW
1+1+1+1+3+1 <-> BBBBWWB
1+1+1+3+1+1 <-> BBBWWBB
1+1+1+1+2+2 <-> BBBBWBW
1+1+1+2+1+2 <-> BBBWBBW
1+1+2+1+1+2 <-> BBWBBBW
1+2+1+1+1+2 <-> BWBBBBW
1+1+1+2+2+1 <-> BBBWBWB
1+1+2+1+2+1 <-> BBWBBWB
(End)
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1},{3,9,28,60,126,226,396,636,1001},50] (* Harvey P. Dale, Mar 19 2017 *)
    f[n_] := Binomial[n - 1, n - 6]/2 - If[ OddQ@ n, 0, Binomial[(n/2) - 1, (n - 6)/2]/2]; Array[a, 40, 7] (* or *)
    CoefficientList[ Series[(x^7 (x^2 + 3))/((x - 1)^6 (x + 1)^3), {x, 0, 46}], x] (* Robert G. Wilson v, May 20 2018 *)
  • PARI
    Vec(x^7*(3+x^2)/((1-x)^6*(1+x)^3) + O(x^100)) \\ Colin Barker, Mar 07 2015

Formula

"BHK[ 6 ]" (reversible, identity, unlabeled, 6 parts) transform of 1, 1, 1, 1, ...
G.f.: x^7*(3+x^2)/((1-x)^6*(1+x)^3). - R. J. Mathar, Nov 08 2008
From Colin Barker, Mar 07 2015: (Start)
a(n) = (2*n^5-30*n^4+170*n^3-480*n^2+728*n-480)/480 if n is even.
a(n) = (2*n^5-30*n^4+170*n^3-450*n^2+548*n-240)/480 if n is odd.
(End)
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-6) - binomial((n/2)-1, (n-6)/2)) if n is even.
a(n) = (1/2)*binomial(n-1, n-6) if n is odd.
G.f.: (1/2)*((x/(1-x))^6 - (x^2/(1-x^2))^3).
These formulae agree with the above formulae by R. J. Mathar and C. Barker.
(End)

A032094 Number of reversible strings with n-1 beads of 2 colors. 7 beads are black. String is not palindromic.

Original entry on oeis.org

4, 16, 60, 160, 396, 848, 1716, 3200, 5720, 9696, 15912, 25152, 38760, 58080, 85272, 122496, 173052, 240240, 328900, 443872, 592020, 780208, 1017900, 1314560, 1682928, 2135744, 2689808, 3361920, 4173840, 5147328, 6310128, 7689984, 9321780, 11240400
Offset: 9

Views

Author

Keywords

Comments

If the offset is changed to 3, this is the 2nd Witt transform of A000292 [Moree]. - R. J. Mathar, Nov 08 2008
Also 7th column of A159916, i.e., number of 7-element subsets of {1,...,n-1} whose elements add up to an odd integer. - M. F. Hasler, May 02 2009
From Petros Hadjicostas, May 19 2018: (Start)
Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms.
When k is even and c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*((x/(1-x))^k - (x^2/(1-x^2))^{k/2}). If (a_k(n): n >= 1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial((n/2)-1, (n-k)/2)) for even n >= k+1 and a_k(n) = (1/2)*binomial(n-1, n-k) for odd n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.)
In this sequence, k = 8, and (according to C. G. Bower) a(n) = a_{k=8}(n) is the number of reversible non-palindromic compositions of n with 8 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 is such a composition of n (with b_i >= 1), then it is equivalent to the composition n = b_8 + b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n.
The fact that we are finding the BHK[8] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms).
In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has k-1 = 7 black balls and n-k = n-8 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 + b_8 = b_8 + b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 7 black balls and n-8 white balls that are mirror images of each other.
Hence, for n >= 2, a(n) = a_{k=8}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 7 black balls and n-k = n-8 white balls. (Clearly, a(n) = a_{k=8}(n) > 0 only for n >= 9.)
(End)

Crossrefs

Cf. A005995, A018210, A032091, A032092, A032093, A159916. - M. F. Hasler, May 02 2009 and Petros Hadjicostas, May 19 2018

Programs

  • Mathematica
    f[n_] := Binomial[n - 1, n - 8]/2 - If[ OddQ@ n, 0, Binomial[(n/2) - 1, (n - 8)/2]/2]; Array[f, 36, 9] (* or *)
    CoefficientList[ Series[ 4x^9 (x^2 + 1)/((x - 1)^8 (x + 1)^4), {x, 0, 40}], x] (* or *)LinearRecurrence[{4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1}, {4, 16, 60, 160, 396, 848, 1716, 3200, 5720, 9696, 15912, 25152}, 34] (* Robert G. Wilson v, May 20 2018 *)
  • PARI
    A032094(n)=(binomial(n--,7)-if(n%2,binomial(n\2,3)))\2 \\ M. F. Hasler, May 02 2009
    
  • PARI
    Vec(4*x^9*(1+x^2)/((1-x)^8*(1+x)^4) + O(x^100)) \\ Colin Barker, Mar 07 2015

Formula

"BHK[ 8 ]" (reversible, identity, unlabeled, 8 parts) transform of 1, 1, 1, 1, ...
From R. J. Mathar, Nov 08 2008: (Start)
G.f.: 4*x^9*(1+x^2)/((1-x)^8*(1+x)^4).
a(n) = 4*A031164(n-9). (End)
From Colin Barker, Mar 07 2015: (Start)
a(n) = (n^7-28*n^6+322*n^5-1960*n^4+6664*n^3-11872*n^2+8448*n)/10080 if n is even.
a(n) = (n^7-28*n^6+322*n^5-1960*n^4+6769*n^3-13132*n^2+13068*n-5040)/10080 if n is odd.
(End)
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-8) - binomial((n/2)-1, (n-8)/2)) if n is even.
a(n) = (1/2)*binomial(n-1, n-8) if n is odd.
G.f.: (1/2)*((x/(1-x))^8 - (x^2/(1-x^2))^4).
These formulae agree with the above formulae by R. J. Mathar and Colin Barker. Clearly, the first two formulae (those about a(n)) can be combined into the one given by M. F. Hasler below in the PROG section.
(End)

A239573 Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239569.

Examples

			There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4:
    .           X           X           X           X           X
   . X         . .         . .         . .         . .         . .
  X . .       X . X       X . .       X . .       . X .       . . .
. . X .     . . . .     . . X .     . . . X     . . . X     X . . X
		

Crossrefs

Cf. A239572, A239569, A032091 (2 points), A239574 (4 points), A239575 (5 points), A279446 (6 points).

Programs

  • PARI
    concat(0, Vec(-x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1)/((x -1)^7*(x +1)^3*(x^2 +x +1)) + O(x^100))) \\ Colin Barker, Mar 23 2014

Formula

a(n) = (n^6 + 3*n^5 - 39*n^4 + 10*n^3 + 456*n^2 - 1008*n + 576)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 5*n - 5)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: -x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1) / ((x -1)^7*(x +1)^3*(x^2 +x +1)). - Colin Barker, Mar 23 2014

A239574 Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239570.

Examples

			There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
      X
     . .
    . X .
   X . . X
		

Crossrefs

Cf. A239572, A239570, A032091 (2 points), A239573 (3 points), A239575 (5 points), A279446 (6 points).

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
    Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)

Formula

a(n) = (n^8 +4*n^7 -78*n^6 -104*n^5 +2556*n^4 -3152*n^3 -27280*n^2 +89664*n -78336)/2304 +IF(n == 1 mod 2)*(28*n^3 -54*n^2 -160*n +129)/768 +IF(n == 1 mod 3)*(n^2 +n -14)/18.
G.f.: x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3). - Vaclav Kotesovec, Mar 29 2014

A239575 Number of non-equivalent (mod D_3) ways to place 5 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 7, 176, 1976, 12565, 57275, 207018, 634166, 1711262, 4181915, 9428657, 19892816, 39684027, 75473209, 137721045, 242391212, 413215132, 684733527, 1106194950, 1746637600, 2701244609, 4099429895, 6114748948, 8977257362, 12988406970, 18539308619, 26132434991
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239571.

Examples

			There are a(5) = 7 non-equivalent ways to place 5 points (x) on a triangular grid of side 5. These are:
        x             x             .             x
       . .           . .           . .           . .
      x . x         x . x         x . x         . x .
     . . . .       . . . .       . . . .       . . . .
    x . . . x     . x . x .     x . x . x     x . x . x
.
        x             x             x
       . .           . .           . .
      . x .         . x .         x . x
     x . . x       x . . .       . . . .
    . . x . .     . . x . x     x . . x .
		

Crossrefs

Cf. A239572, A239571, A032091 (2 points), A239573 (3 points), A239574 (4 points), 279446 (6 points).

Programs

  • Mathematica
    Table[(n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + (1-(-1)^n)/2*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536,{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 31 2014 *)
    Drop[CoefficientList[Series[x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11*(1+x)^5)), {x, 0, 20}], x], 3] (* Vaclav Kotesovec, Mar 31 2014 *)

Formula

a(n) = (n^10 + 5*n^9 - 130*n^8 - 310*n^7 + 7465*n^6 - 1336*n^5 - 202980*n^4 + 464160*n^3 + 1783424*n^2 - 8360064*n + 9192960)/23040 + IF(MOD(n,2) = 1)*(25*n^4 - 94*n^3 - 418*n^2 + 2053*n - 1779)/1536.
G.f.: x^2*(-19 - (19 - 114*x + 190*x^2 + 197*x^3 - 816*x^4 + 1636*x^5 + 3793*x^6 + 965*x^7 + 216*x^8 + 194*x^9 - 2278*x^10 + 53*x^11 + 1547*x^12 - 336*x^13 - 351*x^14 + 125*x^15) / ((-1+x)^11 * (1+x)^5)). - Vaclav Kotesovec, Mar 31 2014

A032093 Number of reversible strings with n-1 beads of 2 colors. 6 beads are black. Strings are not palindromic.

Original entry on oeis.org

3, 12, 40, 100, 226, 452, 848, 1484, 2485, 3976, 6160, 9240, 13524, 19320, 27072, 37224, 50391, 67188, 88440, 114972, 147862, 188188, 237328, 296660, 367913, 452816, 553504, 672112, 811240, 973488, 1161984, 1379856
Offset: 8

Views

Author

Keywords

Comments

From Petros Hadjicostas, May 19 2018: (Start)
Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n>=1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms.
When k is odd and c(n) = 1 for all n>=1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*(x/(1-x))*((x/(1-x))^{k-1} - (x^2/(1-x^2))^{(k-1)/2}). If (a_k(n): n>=1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial(floor((n-1)/2), floor((n-k)/2))) for n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.)
In this sequence, k = 7, and (according to C. G. Bower) a(n) = a_{k=7}(n) is the number of reversible non-palindromic compositions of n with 7 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 is such a composition of n (with b_i >=1), then it is equivalent to the composition n = b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n.
The fact that we are finding the BHK[7] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms).
In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has 6 black balls and n-7 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 = b_7 + b_6 + b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 6 black balls and n-7 white balls that are mirror images of each other.
Hence, for n>=2, a(n) = a_{k=7}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 6 black balls and n-k = n-7 white balls. (Clearly, a(n) = a_{k=7}(n) > 0 only for n >= 8. For n=7, the composition 1+1+1+1+1+1+1, which corresponds to string BBBBBB, is discarded because it is palindromic.)
(End)

Examples

			From _Petros Hadjicostas_, May 19 2018: (Start)
For n=8, we have the following 3 reversible non-palindromic compositions with 7 parts of n: 1+1+1+1+1+1+2 (= 2+1+1+1+1+1+1), 1+1+1+1+1+2+1 (= 1+2+1+1+1+1+1), and 1+1+1+1+2+1+1 (= 1+1+2+1+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 6 black balls and n-7=1 white balls: BBBBBBW (= WBBBBBB), BBBBBWB (= BWBBBBB), and BBBBWBB (= BBWBBBB).
For n=9, we get the following 12 compositions and 12 corresponding strings:
1+1+1+1+1+1+3 <-> BBBBBBWW
1+1+1+1+1+3+1 <-> BBBBBWWB
1+1+1+1+3+1+1 <-> BBBBWWBB
1+1+1+1+1+2+2 <-> BBBBBWBW
1+1+1+1+2+1+2 <-> BBBBWBBW
1+1+1+2+1+1+2 <-> BBBWBBBW
1+1+2+1+1+1+2 <-> BBWBBBBW
1+2+1+1+1+1+2 <-> BWBBBBBW
1+1+1+1+2+2+1 <-> BBBBWBWB
1+1+1+2+1+2+1 <-> BBBWBBWB
1+1+2+1+1+2+1 <-> BBWBBBWB
1+1+1+2+2+1+1 <-> BBBWBWBB
(End)
		

Crossrefs

Formula

"BHK[ 7 ]" (reversible, identity, unlabeled, 7 parts) transform of 1, 1, 1, 1, ...
Empirical G.f.: -x^8*(x^2+3)/((x-1)^7*(x+1)^3). - Colin Barker, Nov 24 2012
From Petros Hadjicostas, May 19 2018: (Start)
a(n) = (1/2)*(binomial(n-1, n-7) - binomial(floor((n-1)/2), floor((n-7)/2))) for n >= 8.
G.f.: (1/2)*(x/(1-x))*((x/(1-x))^6 - (x^2/(1-x^2))^3), which is the same as the g.f. given by Colin Barker above.
(End)

Extensions

Definition changed slightly by Harvey P. Dale, Oct 02 2017

A279446 Number of non-equivalent (mod D_3) ways to place 6 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 66, 2096, 25676, 187984, 983172, 4073312, 14196011, 43309138, 118818916, 298926225, 699619679, 1540212590, 3217045155, 6419240369, 12304959047, 22763742133, 40797668697, 71065355815, 120643462032, 200077436639, 324808463585, 517088445952, 808515893580
Offset: 3

Views

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are not counted. For numbers if they are to be counted see A282998.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A282998, A239572, A032091 (2 points), A239573 (3 points), A239574 (4 points), A239575 (5 points).

Programs

  • Mathematica
    Table[Boole[n > 4] ((n^12 + 6 n^11 - 195 n^10 - 670 n^9 + 17455 n^8 + 13426 n^7 - 835256 n^6 + 1246240 n^5 + 19563664 n^4 - 68181792 n^3 - 131524224 n^2 + 969500160 n - 1298903040)/276480 + Boole[OddQ@ n] (162 n^5 - 715 n^4 - 4480 n^3 + 21955 n^2 + 1108 n - 41685)/30720 + Boole[Mod[n, 3] == 1] (n^2 + n - 25)/27), {n, 3, 28}] (* Michael De Vlieger, Feb 26 2017 *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3) + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 835256*n^6 + 1246240*n^5 + 19563664*n^4 - 68181792*n^3 - 131524224*n^2 + 969500160*n - 1298903040)/276480 + IF(MOD(n, 2) = 1, 162*n^5 - 715*n^4 - 4480*n^3 + 21955*n^2 + 1108*n - 41685)/30720 + IF(MOD(n, 3) = 1, n^2 + n - 25)/27 for n>=4.
G.f.: x^5*(1 + 62*x + 1832*x^2 + 17309*x^3 + 86394*x^4 + 266304*x^5 + 557979*x^6 + 818157*x^7 + 829988*x^8 + 519203*x^9 + 94134*x^10 - 150065*x^11 - 123434*x^12 + 7445*x^13 + 64052*x^14 + 29943*x^15 - 11247*x^16 - 15803*x^17 - 3012*x^18 + 3100*x^19 + 1722*x^20 - 15*x^21 - 233*x^22 - 56*x^23) / ((1 - x)^13*(1 + x)^6*(1 + x + x^2)^3). - Colin Barker, Feb 26 2017

A034852 Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 3, 6, 10, 6, 3, 0, 0, 3, 9, 16, 16, 9, 3, 0, 0, 4, 12, 28, 32, 28, 12, 4, 0, 0, 4, 16, 40, 60, 60, 40, 16, 4, 0, 0, 5, 20, 60, 100, 126, 100, 60, 20, 5, 0, 0, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 0, 0, 6, 30, 110, 240
Offset: 0

Views

Author

Keywords

Comments

Also number of linear unbranched n-4-catafusenes of C_{2v} symmetry.
Number of n-bead black-white reversible strings with k black beads; also binary grids; string is not palindromic. - Yosu Yurramendi, Aug 08 2008
The first seven columns are A004526, A002620, A006584, A032091, A032092, A032093, A032094. Row sums give essentially A032085. - Yosu Yurramendi, Aug 08 2008
From Álvar Ibeas, Jun 01 2020: (Start)
T(n, k) is the sum of odd-degree coefficients of the Gaussian polynomial [n, k]_q. The area below a NE lattice path between (0,0) and (k, n-k) is even for A034851(n, k) paths and odd for T(n, k) of them.
For a (non-reversible) string of k black and n-k white beads, consider the minimum number of bead transpositions needed to place the black ones to the left and the white ones to the right (in other words, the number of inversions of the permutation obtained by labeling the black beads by integers 1,...,k and the white ones by k+1,...,n, in the same order they take on the string). It is even for A034851(n, k) strings and odd for T(n, k) cases.
(End)

Examples

			Triangle begins:
  0;
  0 0;
  0 1 0;
  0 1 1 0;
  0 2 2 2 0;
  0 2 4 4 2 0;
  ...
		

Crossrefs

Essentially the same as A034877.

Programs

  • Haskell
    a034852 n k = a034852_tabl !! n !! k
    a034852_row n = a034852_tabl !! n
    a034852_tabl = zipWith (zipWith (-)) a007318_tabl a034851_tabl
    -- Reinhard Zumkeller, Mar 24 2012
  • Mathematica
    nmax = 12; t[n_?EvenQ, k_?EvenQ] := (Binomial[n, k] - Binomial[n/2, k/2])/ 2; t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_?OddQ, k_?EvenQ] := (Binomial[n, k] - Binomial[(n-1)/2, k/2])/2; t[n_?OddQ, k_?OddQ] := (Binomial[n, k] - Binomial[(n-1)/2, (k-1)/2])/2; Flatten[ Table[t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 15 2011, after Yosu Yurramendi *)

Formula

Equals (A007318-A051159)/2. - Yosu Yurramendi, Aug 08 2008
T(n, k) = T(n - 1, k - 1) + T(n - 1, k); except when n is even and k odd, in which case T(n, k) = A034851(n, k) = T(n - 1, k - 1) + A034841(n - 1, k) = A034841(n - 1, k - 1) + T(n - 1, k) = C(n, k) / 2. - Álvar Ibeas, Jun 01 2020

Extensions

More terms from James Sellers, May 04 2000
Showing 1-10 of 12 results. Next