cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A239572 Triangle T(n, k) = Numbers of non-equivalent (mod D_3) ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 16, 32, 24, 7, 1, 5, 32, 113, 200, 176, 66, 6, 7, 60, 329, 1053, 1976, 2096, 1162, 302, 34, 2, 8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7, 10, 160, 1702, 11988, 57275, 187984, 425329, 658608, 684671, 462519
Offset: 1

Views

Author

Heinrich Ludwig, Mar 22 2014

Keywords

Comments

Triangle T(n, k) is irregularly shaped: 1 <= k <= A239438(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no two of them are adjacent is given by A239438(n).
Without the restriction "non-equivalent (mod D_3)" numbers are given by A239567.

Examples

			Triangle begins
  1;
  1;
  2,   2,   1;
  3,   6,   6,    1;
  4,  16,  32,   24,     7,     1;
  5,  32, 113,  200,   176,    66,     6;
  7,  60, 329, 1053,  1976,  2096,  1162,   302,    34,    2;
  8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7;
		

Crossrefs

Column 1 is A001399,
Column 2 is A032091,
Column 3 is A239573,
Column 4 is A239574,
Column 5 is A239575,
Column 6 is A279446.

A282998 Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3

Views

Author

Heinrich Ludwig, Feb 26 2017

Keywords

Comments

Rotations and reflections of placements are counted. If they are to be ignored, see A279446.

Examples

			There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
        X
       . .
      X . X
     . . . .
    X . X . X
		

Crossrefs

Cf. A279446, A239567, A239568 (2 points), A239569 (3 points), A239570 (4 points), A239571 (5 points).

Programs

  • Maple
    A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
  • Mathematica
    Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
  • PARI
    concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

a(n) = (n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080 for n>=4.
G.f.: x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13. - Colin Barker, Feb 26 2017

A239573 Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239569.

Examples

			There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4:
    .           X           X           X           X           X
   . X         . .         . .         . .         . .         . .
  X . .       X . X       X . .       X . .       . X .       . . .
. . X .     . . . .     . . X .     . . . X     . . . X     X . . X
		

Crossrefs

Cf. A239572, A239569, A032091 (2 points), A239574 (4 points), A239575 (5 points), A279446 (6 points).

Programs

  • PARI
    concat(0, Vec(-x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1)/((x -1)^7*(x +1)^3*(x^2 +x +1)) + O(x^100))) \\ Colin Barker, Mar 23 2014

Formula

a(n) = (n^6 + 3*n^5 - 39*n^4 + 10*n^3 + 456*n^2 - 1008*n + 576)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 5*n - 5)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: -x^3*(2*x^9 +x^8 -8*x^7 -9*x^6 +3*x^5 +29*x^4 +24*x^3 +14*x^2 +3*x +1) / ((x -1)^7*(x +1)^3*(x^2 +x +1)). - Colin Barker, Mar 23 2014

A239574 Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.

Original entry on oeis.org

0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3

Views

Author

Heinrich Ludwig, Mar 23 2014

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A239570.

Examples

			There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
      X
     . .
    . X .
   X . . X
		

Crossrefs

Cf. A239572, A239570, A032091 (2 points), A239573 (3 points), A239575 (5 points), A279446 (6 points).

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
    Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)

Formula

a(n) = (n^8 +4*n^7 -78*n^6 -104*n^5 +2556*n^4 -3152*n^3 -27280*n^2 +89664*n -78336)/2304 +IF(n == 1 mod 2)*(28*n^3 -54*n^2 -160*n +129)/768 +IF(n == 1 mod 3)*(n^2 +n -14)/18.
G.f.: x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3). - Vaclav Kotesovec, Mar 29 2014
Showing 1-4 of 4 results.