A239572
Triangle T(n, k) = Numbers of non-equivalent (mod D_3) ways to place k points on a triangular grid of side n so that no two of them are adjacent. Triangle read by rows.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 6, 6, 1, 4, 16, 32, 24, 7, 1, 5, 32, 113, 200, 176, 66, 6, 7, 60, 329, 1053, 1976, 2096, 1162, 302, 34, 2, 8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7, 10, 160, 1702, 11988, 57275, 187984, 425329, 658608, 684671, 462519
Offset: 1
Triangle begins
1;
1;
2, 2, 1;
3, 6, 6, 1;
4, 16, 32, 24, 7, 1;
5, 32, 113, 200, 176, 66, 6;
7, 60, 329, 1053, 1976, 2096, 1162, 302, 34, 2;
8, 100, 790, 3932, 12565, 25676, 32963, 25638, 11294, 2493, 222, 7;
A282998
Number of ways to place 6 points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 0, 1, 353, 12231, 153194, 1124820, 5893221, 24425212, 85152341, 259805430, 712840480, 1793423456, 4197531636, 9240962666, 19301854131, 38514786780, 73828909906, 136581190475, 244784427831, 426389859697, 723857976770, 1200460734396, 1948846090829, 3102524331336
Offset: 3
There is a(5) = 1 way to place 6 points on a triangular grid of side n = 5:
X
. .
X . X
. . . .
X . X . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
A282998:=n->(n^12 + 6*n^11 - 195*n^10 - 670*n^9 + 17455*n^8 + 13426*n^7 - 836249*n^6 + 1252990*n^5 + 19599884*n^4 - 68542552*n^3 - 131400416*n^2 + 974223360*n - 1308856320)/46080: 0,seq(A282998(n), n=4..30); # Wesley Ivan Hurt, Apr 10 2017
-
Drop[CoefficientList[Series[(x^5 * (1 + 340 * x + 7720 * x^2 + 21439 * x^3 - 12927 * x^4 - 27265 * x^5 + 28385 * x^6 - 6252 * x^7 - 116 * x^8 - 2365 * x^9 + 1787 * x^10 - 352 * x^11) / (1 - x)^13 ),{x,0,27}],x],3] (* Indranil Ghosh, Feb 26 2017, from the g.f. by Colin Barker *)
-
concat(vector(2), Vec(x^5*(1 + 340*x + 7720*x^2 + 21439*x^3 - 12927*x^4 - 27265*x^5 + 28385*x^6 - 6252*x^7 - 116*x^8 - 2365*x^9 + 1787*x^10 - 352*x^11) / (1 - x)^13 + O(x^30))) \\ Colin Barker, Feb 26 2017
A239573
Number of non-equivalent (mod D_3) ways to place 3 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 6, 32, 113, 329, 790, 1702, 3320, 6057, 10400, 17074, 26903, 41047, 60796, 87886, 124220, 172275, 234732, 314992, 416703, 544391, 702878, 898040, 1136098, 1424521, 1771178, 2185392, 2676947, 3257305, 3938450, 4734286, 5659306, 6730177, 7964228, 9381234
Offset: 2
There are a(4) = 6 non-equivalent ways to place 3 points on a triangular grid of side 4:
. X X X X X
. X . . . . . . . . . .
X . . X . X X . . X . . . X . . . .
. . X . . . . . . . X . . . . X . . . X X . . X
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1)
A239574
Number of non-equivalent (mod D_3) ways to place 4 indistinguishable points on a triangular grid of side n so that no two of them are adjacent.
Original entry on oeis.org
0, 1, 24, 200, 1053, 3932, 11988, 31298, 73046, 155880, 310046, 581414, 1038634, 1779531, 2942114, 4714412, 7350595, 11184786, 16654116, 24317554, 34886940, 49252544, 68523846, 94062350, 127534794, 170954603, 226748678, 297809946, 387580007, 500113190, 640178710
Offset: 3
There is a(4) = 1 way to place 4 points on a triangular grid of side n = 4:
X
. .
. X .
X . . X
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1)
-
Drop[CoefficientList[Series[x^4*(-1 - 22*x - 149*x^2 - 586*x^3 - 1354*x^4 - 2154*x^5 - 2300*x^6 - 1510*x^7 - 259*x^8 + 470*x^9 + 443*x^10 + 70*x^11 - 130*x^12 - 94*x^13 - 10*x^14 + 18*x^15 + 8*x^16) / ((-1+x)^9 * (1+x)^4 * (1+x+x^2)^3), {x, 0, 20}], x],3] (* Vaclav Kotesovec, Mar 29 2014 *)
Table[(n^8+4*n^7-78*n^6-104*n^5+2556*n^4-3152*n^3-27280*n^2+89664*n-78336)/2304 + If[Mod[n,2]==1,(28*n^3-54*n^2-160*n+129)/768,0] + If[Mod[n,3]==1,(n^2+n-14)/18,0],{n,3,20}] (* Vaclav Kotesovec after Heinrich Ludwig, Mar 29 2014 *)
Showing 1-4 of 4 results.
Comments