A357339
Triangle read by rows. T(n, k) = Sum_{j=0..n-k} binomial(-n, j) * A268437(n - k, j).
Original entry on oeis.org
1, -1, 1, 10, -2, 1, -270, 24, -3, 1, 14056, -720, 44, -4, 1, -1197000, 40320, -1500, 70, -5, 1, 151169040, -3628800, 92064, -2700, 102, -6, 1, -26521775280, 479001600, -8890560, 181888, -4410, 140, -7, 1, 6169461217920, -87178291200, 1241982720, -18910080, 324912, -6720, 184, -8, 1
Offset: 0
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 10, -2, 1;
[3] -270, 24, -3, 1;
[4] 14056, -720, 44, -4, 1;
[5] -1197000, 40320, -1500, 70, -5, 1;
[6] 151169040, -3628800, 92064, -2700, 102, -6, 1;
-
A357339 := proc(n, k) local u; u:=(n - k); (2*u)!*add(binomial(-n, j) * j! * add((-1)^(j+m)*binomial(u+j, u+m)*Stirling2(u+m, m), m=0..j) / (u+j)!, j=0..u) end: seq(print(seq(A357339(n, k), k=0..n)), n=0..6);
-
# using function A268437.
def A357339(n, k):
return sum(binomial(-n, i) * A268437(n - k, i) for i in range(n - k + 1))
for n in range(9): print([A357339(n, k) for k in range(n + 1)])
A269939
Triangle read by rows, Ward numbers T(n, k) = Sum_{m=0..k} (-1)^(m + k) * binomial(n + k, n + m) * Stirling2(n + m, m), for n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 10, 15, 0, 1, 25, 105, 105, 0, 1, 56, 490, 1260, 945, 0, 1, 119, 1918, 9450, 17325, 10395, 0, 1, 246, 6825, 56980, 190575, 270270, 135135, 0, 1, 501, 22935, 302995, 1636635, 4099095, 4729725, 2027025
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 3;
0, 1, 10, 15;
0, 1, 25, 105, 105;
0, 1, 56, 490, 1260, 945;
0, 1, 119, 1918, 9450, 17325, 10395;
0, 1, 246, 6825, 56980, 190575, 270270, 135135;
- Bishal Deb and Alan D. Sokal, Higher-order Stirling cycle and subset triangles: Total positivity, continued fractions and real-rootedness, arXiv:2507.18959 [math.CO], 2025. See p. 6.
- Peter Luschny, The P-transform.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- Marko Riedel, Math Stackexchange, Upper Stirling numbers and Ward numbers.
- Aleks Žigon Tankosič, Recurrence Relations for Some Integer Sequences Related to Ward Numbers, arXiv:2508.04754 [math.CO], 2025. See p. 2.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See pp. 1, 12.
Alternating row sums are signed factorials
A133942.
-
# first version
A269939 := (n,k) -> add((-1)^(m+k)*binomial(n+k,n+m)*Stirling2(n+m, m), m=0..k):
seq(seq(A269939(n,k), k=0..n), n=0..8);
# Alternatively:
T := proc(n,k) option remember;
`if`(k=0 and n=0, 1,
`if`(k<=0 or k>n, 0,
k*T(n-1,k)+(n+k-1)*T(n-1,k-1))) end:
for n from 0 to 6 do seq(T(n,k),k=0..n) od;
# simple, third version
T := (n,k)-> (n+k)!*coeftayl((exp(z)-z-1)^k/k!, z=0, n+k); # Marko Riedel, Apr 14 2016
-
Table[Sum[(-1)^(m + k) Binomial[n + k, n + m] StirlingS2[n + m, m], {m, 0, k}], {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 15 2016 *)
-
T(n) = {[Vecrev(Pol(p)) | p<-Vec(serlaplace(1/((1+y)*(1 + lambertw(-y/(1+y)*exp((x-y)/(1+y) + O(x*x^n)))))))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
-
T = lambda n,k: sum((-1)^(m+k)*binomial(n+k,n+m)*stirling_number2(n+m,m) for m in (0..k))
for n in (0..6): print([T(n,k) for k in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(8, lambda n: 1/(n+1), lambda n, k: (-1)^k*falling_factorial(n+k,n))
A268438
Triangle read by rows, T(n,k) = (-1)^k*(2*n)!*P[n,k](n/(n+1)) where P is the P-transform, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 8, 6, 0, 180, 240, 90, 0, 8064, 14560, 10080, 2520, 0, 604800, 1330560, 1285200, 604800, 113400, 0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400, 0, 10897286400, 30858347520, 43770767040, 36970053120, 18918900000, 5448643200, 681080400
Offset: 0
Triangle starts:
[1],
[0, 1],
[0, 8, 6],
[0, 180, 240, 90],
[0, 8064, 14560, 10080, 2520],
[0, 604800, 1330560, 1285200, 604800, 113400],
[0, 68428800, 173638080, 209341440, 139708800, 49896000, 7484400].
-
A268438 := proc(n,k) local F,T;
F := proc(n,k) option remember;
`if`(n=0 and k=0, 1,`if`(n=k, (4*n-2)*F(n-1,k-1),
F(n-1,k)*(n+k))) end;
T := proc(n, k) option remember;
`if`(k=0 and n=0, 1,`if`(k<=0 or k>n, 0,
(4*n-2)*n*(n+k-1)*(T(n-1,k)+T(n-1,k-1)))) end:
T(n,k)/F(n,k) end:
for n from 0 to 6 do seq(A268438(n,k), k=0..n) od;
# Alternatively, with the function PTrans defined in A269941:
A268438_row := n -> PTrans(n, n->n/(n+1),(n,k)->(-1)^k*(2*n)!):
seq(lprint(A268438_row(n)), n=0..8);
-
T[n_, k_] := (2n)!/FactorialPower[n+k, n] Sum[(-1)^(m+k) Binomial[n+k, n+m] Abs[StirlingS1[n+m, m]], {m, 0, k}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] (* Jean-François Alcover, Jun 15 2019 *)
-
A268438 = lambda n,k: (factorial(2*n)/falling_factorial(n+k,n))*sum((-1)^(m+k)* binomial(n+k,n+m)*stirling_number1(n+m,m) for m in (0..k))
for n in (0..7): print([A268438(n,m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
PtransMatrix(7, lambda n: n/(n+1), lambda n,k: (-1)^k*factorial(2*n))
A268435
Triangle read by rows, T(n,k) = RF(n-k+1,n-k)*S2(n,k) where RF denotes the rising factorial and S2 the Stirling set numbers, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 12, 6, 1, 0, 120, 84, 12, 1, 0, 1680, 1800, 300, 20, 1, 0, 30240, 52080, 10800, 780, 30, 1, 0, 665280, 1905120, 505680, 42000, 1680, 42, 1, 0, 17297280, 84490560, 29211840, 2857680, 126000, 3192, 56, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 12, 6, 1]
[0, 120, 84, 12, 1]
[0, 1680, 1800, 300, 20, 1]
[0, 30240, 52080, 10800, 780, 30, 1]
[0, 665280, 1905120, 505680, 42000, 1680, 42, 1]
-
T := (n, k) -> pochhammer(n-k+1,n-k)*Stirling2(n,k):
for n from 0 to 9 do seq(T(n,k), k=0..n) od;
# Alternatively:
T := proc(n,k) option remember;
`if`( n=k, 1,
`if`( k=0, 0,
k*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end:
for n from 0 to 7 do seq(T(n,k),k=0..n) od;
-
T[n_, k_] := Pochhammer[n-k+1, n-k] StirlingS2[n, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
-
A268435 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number2(n,k)
[[A268435(n,k) for k in (0..n)] for n in range(8)]
A268436
Triangle read by rows, T(n,k) = RF(n-k+1, n-k) * S1(n,k) where RF denotes the rising factorial and S1 the Stirling cycle numbers, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 24, 6, 1, 0, 720, 132, 12, 1, 0, 40320, 6000, 420, 20, 1, 0, 3628800, 460320, 27000, 1020, 30, 1, 0, 479001600, 53343360, 2728320, 88200, 2100, 42, 1, 0, 87178291200, 8693879040, 397111680, 11371920, 235200, 3864, 56, 1
Offset: 0
[1]
[0, 1]
[0, 2, 1]
[0, 24, 6, 1]
[0, 720, 132, 12, 1]
[0, 40320, 6000, 420, 20, 1]
[0, 3628800, 460320, 27000, 1020, 30, 1]
[0, 479001600, 53343360, 2728320, 88200, 2100, 42, 1]
-
T := (n,k) -> pochhammer(n-k+1, n-k)*abs(Stirling1(n,k)):
for n from 0 to 9 do seq(T(n,k), k=0..n) od;
# Alternatively:
T := proc(n,k) option remember;
`if`( n=k, 1,
`if`( k=0, 0,
(n-1)*(4*(n-k)-2)*T(n-1,k)+T(n-1,k-1))) end:
for n from 0 to 7 do seq(T(n,k),k=0..n) od;
-
T[n_, k_] := Pochhammer[n-k+1, n-k] Abs[StirlingS1[n, k]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2019 *)
-
A268436 = lambda n,k: rising_factorial(n-k+1,n-k)*stirling_number1(n,k)
[[A268436(n,k) for k in (0..n)] for n in range(8)]
A268439
Triangle read by rows, T(n,k) = C(2*n,n+k)*Sum_{m=0..k} (-1)^(m+k)*C(n+k,n+m)* Stirling2(n+m,m), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 15, 60, 15, 0, 56, 700, 840, 105, 0, 210, 6720, 22050, 12600, 945, 0, 792, 58905, 421960, 623700, 207900, 10395, 0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135, 0, 11440, 4012008, 100180080, 551450900, 916515600, 491891400, 75675600, 2027025
Offset: 0
[1]
[0, 1]
[0, 4, 3]
[0, 15, 60, 15]
[0, 56, 700, 840, 105]
[0, 210, 6720, 22050, 12600, 945]
[0, 792, 58905, 421960, 623700, 207900, 10395]
[0, 3003, 492492, 6831825, 20740720, 17342325, 3783780, 135135]
-
# The function PTrans is defined in A269941.
A268439_row := n -> PTrans(n, n->1/(n+1), (n,k) -> (-1)^k*(2*n)!/(k!*(n-k)!)):
seq(print(A268439_row(n)), n=0..8);
-
A268439 = lambda n, k: binomial(2*n, n+k)*sum((-1)^(m+k)*binomial(n+k, n+m)* stirling_number2(n+m, m) for m in (0..k))
for n in (0..7): print([A268439(n, m) for m in (0..n)])
-
# uses[PtransMatrix from A269941]
# Alternatively
PtransMatrix(8, lambda n: 1/(n+1), lambda n,k: (-1)^k*factorial(2*n)/ (factorial(k)*factorial(n-k)))
Showing 1-6 of 6 results.
Comments