A357079
Triangle read by rows. T(n, k) = A356265(n, k) + A357078(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 9, 12, 2, 1, 0, 49, 37, 31, 2, 1, 0, 329, 149, 176, 63, 2, 1, 0, 2561, 794, 853, 702, 127, 2, 1, 0, 22369, 5599, 3836, 5709, 2549, 255, 2, 1, 0, 216225, 47275, 18422, 37609, 33949, 8886, 511, 2, 1, 2291457, 451176, 107535, 218506, 344670, 184653, 29777, 1023, 2, 1
Offset: 0
Triangle T(n, k) starts: [Row sums]
[0] 1; [1]
[1] 0, 1; [1]
[2] 0, 1, 1; [2]
[3] 0, 3, 2, 1; [6]
[4] 0, 9, 12, 2, 1; [24]
[5] 0, 49, 37, 31, 2, 1; [120]
[6] 0, 329, 149, 176, 63, 2, 1; [720]
[7] 0, 2561, 794, 853, 702, 127, 2, 1; [5040]
[8] 0, 22369, 5599, 3836, 5709, 2549, 255, 2, 1; [40320]
[9] 0, 216225, 47275, 18422, 37609, 33949, 8886, 511, 2, 1; [362880]
A059438
Triangle T(n,k) (1 <= k <= n) read by rows: T(n,k) is the number of permutations of [1..n] with k components.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 32, 12, 4, 1, 461, 177, 58, 18, 5, 1, 3447, 1142, 327, 92, 25, 6, 1, 29093, 8411, 2109, 531, 135, 33, 7, 1, 273343, 69692, 15366, 3440, 800, 188, 42, 8, 1, 2829325, 642581, 125316, 24892, 5226, 1146, 252, 52, 9, 1
Offset: 1
Triangle begins:
[1] [ 1]
[2] [ 1, 1]
[3] [ 3, 2, 1]
[4] [ 13, 7, 3, 1]
[5] [ 71, 32, 12, 4, 1]
[6] [ 461, 177, 58, 18, 5, 1]
[7] [ 3447, 1142, 327, 92, 25, 6, 1]
[8] [ 29093, 8411, 2109, 531, 135, 33, 7, 1]
[9] [273343, 69692, 15366, 3440, 800, 188, 42, 8, 1]
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 262 (#14).
- Antonio Di Crescenzo, Barbara Martinucci, and Abdelaziz Rhandi, A linear birth-death process on a star graph and its diffusion approximation, arXiv:1405.4312 [math.PR], 2014.
- FindStat - Combinatorial Statistic Finder, The decomposition number of a permutation.
- Peter Hegarty and Anders Martinsson, On the existence of accessible paths in various models of fitness landscapes, arXiv:1210.4798 [math.PR], 2012-2014. - From _N. J. A. Sloane_, Jan 01 2013
- Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
A version with reflected rows is
A263484.
-
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, A003319); # Peter Luschny, Oct 09 2022
-
(* p = indecomposable permutations = A003319 *) p[n_] := p[n] = n! - Sum[ k!*p[n-k], {k, 1, n-1}]; t[n_, k_] /; n < k = 0; t[n_, 1] := p[n]; t[n_, k_] /; n >= k := t[n, k] = Sum[ t[n-j, k-1]*p[j], {j, 1, n}]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}] ] (* Jean-François Alcover, Mar 06 2012, after Philippe Deléham *)
-
def A059438_triangle(dim) :
R = PolynomialRing(ZZ, 'x')
C = [R(0)] + [R(1) for i in range(dim+1)]
A = [(i + 2) // 2 for i in range(dim+1)]
A[0] = R.gen(); T = []
for k in range(1, dim+1) :
for n in range(k, 0, -1) :
C[n] = C[n-1] + C[n+1] * A[n-1]
T.append(list(C[1])[1::])
return T
A059438_triangle(8) # Peter Luschny, Sep 10 2022
-
# Alternatively, using the function PartTrans from A357078:
# Adds a (0,0)-based column (1, 0, 0, ...) to the left of the triangle.
dim = 10
A = ZZ[['t']]; g = A([0]+[factorial(n) for n in range(1, 30)]).O(dim+2)
PartTrans(dim, lambda n: list(g / (1 + g))[n]) # Peter Luschny, Sep 11 2022
Showing 1-2 of 2 results.
Comments