A269941
Triangle read by rows, the coefficients of the partial P-polynomials.
Original entry on oeis.org
1, 0, -1, 0, -1, 1, 0, -1, 2, -1, 0, -1, 1, 2, -3, 1, 0, -1, 2, 2, -3, -3, 4, -1, 0, -1, 1, 2, 2, -1, -6, -3, 6, 4, -5, 1, 0, -1, 2, 2, 2, -3, -3, -6, -3, 4, 12, 4, -10, -5, 6, -1, 0, -1, 1, 2, 2, 2, -3, -3, -6, -6, -3, 1, 12, 6, 12, 4, -10, -20, -5, 15, 6, -7, 1
Offset: 0
[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-1], [2], [-1]],
[[0], [-1], [1, 2], [-3], [1]],
[[0], [-1], [2, 2], [-3, -3], [4], [-1]],
[[0], [-1], [1, 2, 2], [-1, -6, -3], [6, 4], [-5], [1]],
[[0], [-1], [2, 2, 2], [-3, -3, -6, -3], [4, 12, 4], [-10, -5], [6], [-1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805.
- Peter Luschny, The P-transform, 2016.
- Peter Luschny, The Partition Transform, A SageMath Jupyter Notebook, GitHub, 2016/2022.
- Marko Riedel, Answer to Question 4943578, Mathematics Stack Exchange, 2024.
- Peter Taylor, Answer to Question 474483, MathOverflow, 2024.
-
PTrans := proc(n, f, nrm:=NULL) local q, p, r, R;
if n = 0 then return [1] fi; R := [seq(0,j=0..n)];
for q in combinat:-partition(n) do
p := [op(ListTools:-Reverse(q)),0]; r := p[1]+1;
mul(binomial(p[j], p[j+1])*f(j)^p[j], j=1..nops(q));
R[r] := R[r]-(-1)^r*% od;
if nrm = NULL then R else [seq(nrm(n,k)*R[k+1],k=0..n)] fi end:
A269941_row := n -> seq(coeffs(p), p in PTrans(n, n -> x[n])):
seq(lprint(A269941_row(n)), n=0..8);
-
def PtransMatrix(dim, f, norm = None, inverse = False, reduced = False):
i = 1; F = [1]
if reduced:
while i <= dim: F.append(f(i)); i += 1
else:
while i <= dim: F.append(F[i-1]*f(i)); i += 1
C = [[0 for k in range(m+1)] for m in range(dim)]
C[0][0] = 1
if inverse:
for m in (1..dim-1):
C[m][m] = -C[m-1][m-1]/F[1]
for k in range(m-1, 0, -1):
C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1]
for i in (2..m-k+1)))/F[1]
else:
for m in (1..dim-1):
C[m][m] = -C[m-1][m-1]*F[1]
for k in range(m-1, 0, -1):
C[m][k] = -sum(F[i]*C[m-i][k-1] for i in (1..m-k+1))
if norm == None: return C
for m in (1..dim-1):
for k in (1..m): C[m][k] *= norm(m,k)
return C
def PMultiCoefficients(dim, norm = None, inverse = False):
def coefficient(p):
if p <= 1: return [p]
return SR(p).fraction(ZZ).numerator().coefficients()
f = lambda n: var('x'+str(n))
P = PtransMatrix(dim, f, norm, inverse)
return [[coefficient(p) for p in L] for L in P]
print(flatten(PMultiCoefficients(9)))
A268442
Triangle read by rows, the coefficients of the inverse Bell polynomials.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 3, -1, -3, 1, 0, -15, 10, -1, 15, -4, -6, 1, 0, 105, -105, 10, 15, -1, -105, 60, -5, 45, -10, -10, 1, 0, -945, 1260, -280, -210, 35, 21, -1, 945, -840, 70, 105, -6, -420, 210, -15, 105, -20, -15, 1
Offset: 0
[[1]],
[[0], [1]],
[[0], [-1], [1]],
[[0], [3, -1], [-3], [1]],
[[0], [-15, 10, -1], [15, -4], [-6], [1]],
[[0], [105, -105, 10, 15, -1], [-105, 60, -5], [45, -10], [-10], [1]]
Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of first kind (A048994). The column 1 of sublists is A176740 (missing the leading 1) and A134685 in different order.
-
A268442Matrix[dim_] := Module[ {v, r, A},
v = Table[Subscript[x,j],{j,1,dim}];
r = Table[Subscript[x,j]->1,{j,1,n}];
A = Table[Table[BellY[n,k,v], {k,0,dim}], {n,0,dim}];
Table[Table[MonomialList[Inverse[A][[n,k]]/. r[[1]],
v, Lexicographic] /. r, {k,1,n}] // Flatten, {n,1,dim}]];
A268442Matrix[7] // Flatten
-
# see link
A353131
Triangle read by rows of partial Bell polynomials B_{n,k} (x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, n>=1, 1<=k<=n.
Original entry on oeis.org
2, 2, 4, 12, 12, 8, 72, 108, 48, 16, 480, 960, 600, 160, 32, 3600, 9360, 7320, 2640, 480, 64, 30240, 100800, 95760, 42000, 10080, 1344, 128, 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256, 2903040, 15240960, 20442240, 12337920, 4142880, 854784, 112896, 9216, 512
Offset: 1
For n=4,k=2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3)=4x_1x_3+3x_2^2, so a(4,2)=B_{4,2}(2,2,12)=4*2*12+3*2^2=108.
Triangle starts:
[1] 2;
[2] 2, 4;
[3] 12, 12, 8;
[4] 72, 108, 48, 16;
[5] 480, 960, 600, 160, 32;
[6] 3600, 9360, 7320, 2640, 480, 64;
[7] 30240, 100800, 95760, 42000, 10080, 1344, 128;
[8] 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A353132
Triangle read by rows of partial Bell polynomials B_{n,k}(x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, divided by (n-k+1)!, n >= 1, 1 <= k <= n.
Original entry on oeis.org
2, 1, 4, 2, 6, 8, 3, 18, 24, 16, 4, 40, 100, 80, 32, 5, 78, 305, 440, 240, 64, 6, 140, 798, 1750, 1680, 672, 128, 7, 236, 1876, 5838, 8400, 5824, 1792, 256, 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512, 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024
Offset: 1
For n = 4, k = 2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3) = 4*x_1*x_3 + 3*x_2^2, so T(4,2) = B_{4,2}(2,2,12) - (4*2*12 + 3*2^2)/3! = 18.
Triangle begins:
[1] 2;
[2] 1, 4;
[3] 2, 6, 8;
[4] 3, 18, 24, 16;
[5] 4, 40, 100, 80, 32;
[6] 5, 78, 305, 440, 240, 64;
[7] 6, 140, 798, 1750, 1680, 672, 128;
[8] 7, 236, 1876, 5838, 8400, 5824, 1792, 256;
[9] 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512;
[10] 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A269942
Triangle read by rows, the coefficients of the inverse partial P-polynomials.
Original entry on oeis.org
1, 0, -1, 0, -1, 1, 0, -2, 1, 2, -1, 0, -5, 5, -1, 5, -2, -3, 1, 0, -14, 21, -3, -6, 1, 14, -12, 2, -9, 3, 4, -1, 0, -42, 84, -28, -28, 7, 7, -1, 42, -56, 7, 14, -2, -28, 21, -3, 14, -4, -5, 1
Offset: 0
[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-2, 1], [2], [-1]],
[[0], [-5, 5, -1], [5, -2], [-3], [1]],
[[0], [-14, 21, -3, -6, 1], [14, -12, 2], [-9, 3], [4], [-1]],
[[0], [-42,84,-28,-28,7,7,-1],[42,-56,7,14,-2],[-28,21,-3],[14,-4],[-5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.
A335256
Irregular triangle read by rows: row n gives the coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ..., x_n) with monomials sorted into standard order.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1, 1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1, 1, 28, 56, 210, 70, 560, 420, 56, 420, 280, 840, 105, 28, 168, 280, 210, 280, 8, 28, 56, 35, 1
Offset: 1
The first few complete exponential Bell polynomials are:
(1) x[1];
(2) x[1]^2 + x[2];
(3) x[1]^3 + 3*x[1]*x[2] + x[3];
(4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4];
(5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5];
(6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 15*x[2]^3 + 6*x[1]*x[5] + 15*x[2]*x[4] + 10*x[3]^2 + x[6].
(7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 105*x[1]*x[2]^3 + 21*x[1]^2*x[5] + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 105*x[2]^2*x[3] + 7*x[1]*x[6] + 21*x[2]*x[5] + 35*x[3]*x[4] + x[7].
...
The first few rows of the triangle are
1;
1, 1;
1, 3, 1;
1, 6, 4, 3, 1;
1, 10, 10, 15, 5, 10, 1;
1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1;
1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134 and 307-310.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.
-
triangle := proc(numrows) local E, s, Q;
E := add(x[i]*t^i/i!, i=1..numrows);
s := series(exp(E), t, numrows+1);
Q := k -> sort(expand(k!*coeff(s, t, k)));
seq(print(coeffs(Q(k))), k=1..numrows) end:
triangle(8); # Peter Luschny, May 30 2020
-
imax = 10;
polys = (CoefficientList[Exp[Sum[x[i]*t^i/i!, {i, 1, imax}]] + O[t]^imax // Normal, t]*Range[0, imax-1]!) // Rest;
Table[MonomialList[polys[[i]], Array[x, i], "DegreeLexicographic"] /. x[] -> 1, {i, 1, imax-1}] // Flatten (* _Jean-François Alcover, Jun 02 2024 *)
-
/* It produces the partial exponential Bell polynomials in decreasing degree, but the monomials are not necessarily in standard order. */
Bell(n,k)= { my(x, v, dv, var = i->eval(Str("X", i))); v = vector(n, i, if (i==1, 'E, var(i-1))); dv = vector(n, i, if (i==1, 'X*var(1)*'E, var(i))); x = diffop('E, v, dv, n) / 'E; if (k < 0, subst(x,'X, 1), polcoeff(x, k, 'X)); };
row(n) = for(k=1, n, print1("[", Bell(n, n+1-k), "]", ","))
Showing 1-6 of 6 results.
Comments