cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A269941 Triangle read by rows, the coefficients of the partial P-polynomials.

Original entry on oeis.org

1, 0, -1, 0, -1, 1, 0, -1, 2, -1, 0, -1, 1, 2, -3, 1, 0, -1, 2, 2, -3, -3, 4, -1, 0, -1, 1, 2, 2, -1, -6, -3, 6, 4, -5, 1, 0, -1, 2, 2, 2, -3, -3, -6, -3, 4, 12, 4, -10, -5, 6, -1, 0, -1, 1, 2, 2, 2, -3, -3, -6, -6, -3, 1, 12, 6, 12, 4, -10, -20, -5, 15, 6, -7, 1
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Comments

For the definition of the partial P-polynomials see the link 'P-transform'. The triangle of coefficients of the inverse partial P-polynomials is A269942.

Examples

			[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-1], [2], [-1]],
[[0], [-1], [1, 2], [-3], [1]],
[[0], [-1], [2, 2], [-3, -3], [4], [-1]],
[[0], [-1], [1, 2, 2], [-1, -6, -3], [6, 4], [-5], [1]],
[[0], [-1], [2, 2, 2], [-3, -3, -6, -3], [4, 12, 4], [-10, -5], [6], [-1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805.
		

Crossrefs

Programs

  • Maple
    PTrans := proc(n, f, nrm:=NULL) local q, p, r, R;
    if n = 0 then return [1] fi; R := [seq(0,j=0..n)];
    for q in combinat:-partition(n) do
       p := [op(ListTools:-Reverse(q)),0]; r := p[1]+1;
       mul(binomial(p[j], p[j+1])*f(j)^p[j], j=1..nops(q));
       R[r] := R[r]-(-1)^r*% od;
    if nrm = NULL then R else [seq(nrm(n,k)*R[k+1],k=0..n)] fi end:
    A269941_row := n -> seq(coeffs(p), p in PTrans(n, n -> x[n])):
    seq(lprint(A269941_row(n)), n=0..8);
  • Sage
    def PtransMatrix(dim, f, norm = None, inverse = False, reduced = False):
        i = 1; F = [1]
        if reduced:
            while i <= dim: F.append(f(i)); i += 1
        else:
            while i <= dim: F.append(F[i-1]*f(i)); i += 1
        C = [[0 for k in range(m+1)] for m in range(dim)]
        C[0][0] = 1
        if inverse:
            for m in (1..dim-1):
                C[m][m] = -C[m-1][m-1]/F[1]
                for k in range(m-1, 0, -1):
                    C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1]
                              for i in (2..m-k+1)))/F[1]
        else:
            for m in (1..dim-1):
                C[m][m] = -C[m-1][m-1]*F[1]
                for k in range(m-1, 0, -1):
                    C[m][k] = -sum(F[i]*C[m-i][k-1] for i in (1..m-k+1))
        if norm == None: return C
        for m in (1..dim-1):
            for k in (1..m): C[m][k] *= norm(m,k)
        return C
    def PMultiCoefficients(dim, norm = None, inverse = False):
        def coefficient(p):
            if p <= 1: return [p]
            return SR(p).fraction(ZZ).numerator().coefficients()
        f = lambda n: var('x'+str(n))
        P = PtransMatrix(dim, f, norm, inverse)
        return [[coefficient(p) for p in L] for L in P]
    print(flatten(PMultiCoefficients(9)))

A268442 Triangle read by rows, the coefficients of the inverse Bell polynomials.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 3, -1, -3, 1, 0, -15, 10, -1, 15, -4, -6, 1, 0, 105, -105, 10, 15, -1, -105, 60, -5, 45, -10, -10, 1, 0, -945, 1260, -280, -210, 35, 21, -1, 945, -840, 70, 105, -6, -420, 210, -15, 105, -20, -15, 1
Offset: 0

Views

Author

Peter Luschny, Feb 06 2016

Keywords

Comments

The triangle of coefficients of the Bell polynomials is A268441. For the definition of the inverse Bell polynomials see the link 'Bell transform'.

Examples

			[[1]],
[[0], [1]],
[[0], [-1],                    [1]],
[[0], [3, -1],                 [-3],           [1]],
[[0], [-15, 10, -1],           [15, -4],       [-6],      [1]],
[[0], [105, -105, 10, 15, -1], [-105, 60, -5], [45, -10], [-10], [1]]
Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of first kind (A048994). The column 1 of sublists is A176740 (missing the leading 1) and A134685 in different order.
		

Crossrefs

Programs

  • Mathematica
    A268442Matrix[dim_] := Module[ {v, r, A},
    v = Table[Subscript[x,j],{j,1,dim}];
    r = Table[Subscript[x,j]->1,{j,1,n}];
    A = Table[Table[BellY[n,k,v], {k,0,dim}], {n,0,dim}];
    Table[Table[MonomialList[Inverse[A][[n,k]]/. r[[1]],
    v, Lexicographic] /. r, {k,1,n}] // Flatten, {n,1,dim}]];
    A268442Matrix[7] // Flatten
  • Sage
    # see link

A353131 Triangle read by rows of partial Bell polynomials B_{n,k} (x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, n>=1, 1<=k<=n.

Original entry on oeis.org

2, 2, 4, 12, 12, 8, 72, 108, 48, 16, 480, 960, 600, 160, 32, 3600, 9360, 7320, 2640, 480, 64, 30240, 100800, 95760, 42000, 10080, 1344, 128, 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256, 2903040, 15240960, 20442240, 12337920, 4142880, 854784, 112896, 9216, 512
Offset: 1

Views

Author

Jordan Weaver, Apr 24 2022

Keywords

Examples

			For n=4,k=2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3)=4x_1x_3+3x_2^2, so a(4,2)=B_{4,2}(2,2,12)=4*2*12+3*2^2=108.
Triangle starts:
[1]      2;
[2]      2,       4;
[3]     12,      12,       8;
[4]     72,     108,      48,     16;
[5]    480,     960,     600,    160,     32;
[6]   3600,    9360,    7320,   2640,    480,    64;
[7]  30240,  100800,   95760,  42000,  10080,  1344,  128;
[8] 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256.
		

Crossrefs

Formula

T(n,k) = A353132(n,k)*(n-k+1)!.
Sum_{k=1..n} T(n,k)/(n-k+1)! = A349458(n).

A353132 Triangle read by rows of partial Bell polynomials B_{n,k}(x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, divided by (n-k+1)!, n >= 1, 1 <= k <= n.

Original entry on oeis.org

2, 1, 4, 2, 6, 8, 3, 18, 24, 16, 4, 40, 100, 80, 32, 5, 78, 305, 440, 240, 64, 6, 140, 798, 1750, 1680, 672, 128, 7, 236, 1876, 5838, 8400, 5824, 1792, 256, 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512, 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024
Offset: 1

Views

Author

Jordan Weaver, Apr 24 2022

Keywords

Examples

			For n = 4, k = 2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3) = 4*x_1*x_3 + 3*x_2^2, so T(4,2) = B_{4,2}(2,2,12) - (4*2*12 + 3*2^2)/3! = 18.
Triangle begins:
   [1] 2;
   [2] 1,   4;
   [3] 2,   6,    8;
   [4] 3,  18,   24,    16;
   [5] 4,  40,  100,    80,     32;
   [6] 5,  78,  305,   440,    240,     64;
   [7] 6, 140,  798,  1750,   1680,    672,    128;
   [8] 7, 236, 1876,  5838,   8400,   5824,   1792,   256;
   [9] 8, 378, 4056, 17136,  34524,  35616,  18816,  4608,   512;
  [10] 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024.
		

Crossrefs

Formula

T(n,k) = A353131(n,k)/(n-k+1)!
Sum_{k=1..n} T(n,k) = A349458(n).

A269942 Triangle read by rows, the coefficients of the inverse partial P-polynomials.

Original entry on oeis.org

1, 0, -1, 0, -1, 1, 0, -2, 1, 2, -1, 0, -5, 5, -1, 5, -2, -3, 1, 0, -14, 21, -3, -6, 1, 14, -12, 2, -9, 3, 4, -1, 0, -42, 84, -28, -28, 7, 7, -1, 42, -56, 7, 14, -2, -28, 21, -3, 14, -4, -5, 1
Offset: 0

Views

Author

Peter Luschny, Mar 08 2016

Keywords

Comments

The triangle of coefficients of the partial P-polynomials is A269941. For the definition of the inverse partial P-polynomials see the link 'P-transform'.

Examples

			[[1]],
[[0], [-1]],
[[0], [-1], [1]],
[[0], [-2, 1], [2], [-1]],
[[0], [-5, 5, -1], [5, -2], [-3], [1]],
[[0], [-14, 21, -3, -6, 1], [14, -12, 2], [-9, 3], [4], [-1]],
[[0], [-42,84,-28,-28,7,7,-1],[42,-56,7,14,-2],[-28,21,-3],[14,-4],[-5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.
		

Crossrefs

Programs

  • Sage
    # For function PMultiCoefficients see A269941.
    PMultiCoefficients(7, inverse = True)

A335256 Irregular triangle read by rows: row n gives the coefficients of the n-th complete exponential Bell polynomial B_n(x_1, x_2, ..., x_n) with monomials sorted into standard order.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 4, 3, 1, 1, 10, 10, 15, 5, 10, 1, 1, 15, 20, 45, 15, 60, 15, 6, 15, 10, 1, 1, 21, 35, 105, 35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1, 1, 28, 56, 210, 70, 560, 420, 56, 420, 280, 840, 105, 28, 168, 280, 210, 280, 8, 28, 56, 35, 1
Offset: 1

Views

Author

Petros Hadjicostas, May 28 2020

Keywords

Comments

"Standard order" means as produced by Maple's "sort" command.
According to the Maple help files for the "sort" command, polynomials in multiple variables are "sorted in total degree with ties broken by lexicographic order (this is called graded lexicographic order)."
Thus, for example, x_1^2*x_3 = x_1*x_1*x_3 > x_1*x_2*x_2 = x_1*x_2^2, while x_1^2*x_4 = x_1*x_1*x_4 > x_1*x_2*x_3.
The number of terms in the n-th row is A000041(n), while the sum of the terms is A000110(n).
The function Bell(n,k) in the PARI program below is a modification of a similar function in the PARI help files and uses the Faà di Bruno formula (cf. A036040).

Examples

			The first few complete exponential Bell polynomials are:
(1) x[1];
(2) x[1]^2 + x[2];
(3) x[1]^3 + 3*x[1]*x[2] + x[3];
(4) x[1]^4 + 6*x[1]^2*x[2] + 4*x[1]*x[3] + 3*x[2]^2 + x[4];
(5) x[1]^5 + 10*x[1]^3*x[2] + 10*x[1]^2*x[3] + 15*x[1]*x[2]^2 + 5*x[1]*x[4] + 10*x[2]*x[3] + x[5];
(6) x[1]^6 + 15*x[1]^4*x[2] + 20*x[1]^3*x[3] + 45*x[1]^2*x[2]^2 + 15*x[1]^2*x[4] + 60*x[1]*x[2]*x[3] + 15*x[2]^3 + 6*x[1]*x[5] + 15*x[2]*x[4] + 10*x[3]^2 + x[6].
(7) x[1]^7 + 21*x[1]^5*x[2] + 35*x[1]^4*x[3] + 105*x[1]^3*x[2]^2 + 35*x[1]^3*x[4] + 210*x[1]^2*x[2]*x[3] + 105*x[1]*x[2]^3 + 21*x[1]^2*x[5] + 105*x[1]*x[2]*x[4] + 70*x[1]*x[3]^2 + 105*x[2]^2*x[3] + 7*x[1]*x[6] + 21*x[2]*x[5] + 35*x[3]*x[4] + x[7].
...
The first few rows of the triangle are
  1;
  1,  1;
  1,  3,  1;
  1,  6,  4,   3,   1;
  1, 10, 10,  15,   5,  10,   1;
  1, 15, 20,  45,  15,  60,  15,  6,  15, 10,   1;
  1, 21, 35, 105,  35, 210, 105, 21, 105, 70, 105, 7, 21, 35, 1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 134 and 307-310.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, Chapter 2, Section 8 and table on page 49.

Crossrefs

For different versions, see A178867 and A268441.

Programs

  • Maple
    triangle := proc(numrows) local E, s, Q;
    E := add(x[i]*t^i/i!, i=1..numrows);
    s := series(exp(E), t, numrows+1);
    Q := k -> sort(expand(k!*coeff(s, t, k)));
    seq(print(coeffs(Q(k))), k=1..numrows) end:
    triangle(8); # Peter Luschny, May 30 2020
  • Mathematica
    imax = 10;
    polys = (CoefficientList[Exp[Sum[x[i]*t^i/i!, {i, 1, imax}]] + O[t]^imax // Normal, t]*Range[0, imax-1]!) // Rest;
    Table[MonomialList[polys[[i]], Array[x, i], "DegreeLexicographic"] /. x[] -> 1, {i, 1, imax-1}] // Flatten (* _Jean-François Alcover, Jun 02 2024 *)
  • PARI
    /* It produces the partial exponential Bell polynomials in decreasing degree, but the monomials are not necessarily in standard order. */
    Bell(n,k)= { my(x, v, dv, var = i->eval(Str("X", i))); v = vector(n, i, if (i==1, 'E, var(i-1))); dv = vector(n, i, if (i==1, 'X*var(1)*'E, var(i))); x = diffop('E, v, dv, n) / 'E; if (k < 0, subst(x,'X, 1), polcoeff(x, k, 'X)); };
    row(n) = for(k=1, n, print1("[", Bell(n, n+1-k), "]", ","))

Formula

B_n(x[1], ..., x[n]) = Sum_{k=1..n} B_{n,k}(x[1], ..., x[n-k+1]), where B_{n,k} = B_{n,k}(x[1], ..., x[n-k+1]) are the partial exponential Bell polynomials that satisfy B_{n,1} = x[n] for n >= 1 and B_{n,k} = (1/k)*Sum_{m=k-1..n-1} binomial(n,m)*x[n-m]*B_{m,k-1} for n >= 2 and k = 2..n.
E.g.f.: Exp(Sum_{i >= 1} x_i*t^i/i!) = 1 + Sum_{n >= 1} B_n(x_1, x_2, ..., x_n)*t^n/n! [Comtet, p. 134, Eq. [3b]].
Showing 1-6 of 6 results.