Jordan Weaver has authored 11 sequences. Here are the ten most recent ones:
A353132
Triangle read by rows of partial Bell polynomials B_{n,k}(x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, divided by (n-k+1)!, n >= 1, 1 <= k <= n.
Original entry on oeis.org
2, 1, 4, 2, 6, 8, 3, 18, 24, 16, 4, 40, 100, 80, 32, 5, 78, 305, 440, 240, 64, 6, 140, 798, 1750, 1680, 672, 128, 7, 236, 1876, 5838, 8400, 5824, 1792, 256, 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512, 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024
Offset: 1
For n = 4, k = 2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3) = 4*x_1*x_3 + 3*x_2^2, so T(4,2) = B_{4,2}(2,2,12) - (4*2*12 + 3*2^2)/3! = 18.
Triangle begins:
[1] 2;
[2] 1, 4;
[3] 2, 6, 8;
[4] 3, 18, 24, 16;
[5] 4, 40, 100, 80, 32;
[6] 5, 78, 305, 440, 240, 64;
[7] 6, 140, 798, 1750, 1680, 672, 128;
[8] 7, 236, 1876, 5838, 8400, 5824, 1792, 256;
[9] 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512;
[10] 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A353131
Triangle read by rows of partial Bell polynomials B_{n,k} (x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, n>=1, 1<=k<=n.
Original entry on oeis.org
2, 2, 4, 12, 12, 8, 72, 108, 48, 16, 480, 960, 600, 160, 32, 3600, 9360, 7320, 2640, 480, 64, 30240, 100800, 95760, 42000, 10080, 1344, 128, 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256, 2903040, 15240960, 20442240, 12337920, 4142880, 854784, 112896, 9216, 512
Offset: 1
For n=4,k=2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3)=4x_1x_3+3x_2^2, so a(4,2)=B_{4,2}(2,2,12)=4*2*12+3*2^2=108.
Triangle starts:
[1] 2;
[2] 2, 4;
[3] 12, 12, 8;
[4] 72, 108, 48, 16;
[5] 480, 960, 600, 160, 32;
[6] 3600, 9360, 7320, 2640, 480, 64;
[7] 30240, 100800, 95760, 42000, 10080, 1344, 128;
[8] 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349458
Number of smooth positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
1, 2, 5, 16, 61, 256, 1132, 5174, 24229, 115654, 560741, 2754082, 13674212, 68522208, 346100952, 1760213254, 9006390373, 46329244034, 239455376071, 1242923653316, 6476376834789, 33863408028888, 177625109853808, 934404580376016
Offset: 0
For n = 3, the a(3) = 16 positroids correspond the decorated permutations with underlying permutations 231, 312, 321, 213, 132, and 123 in one-line notation. Each fixed point, e.g., the 2 in 321, can be colored in two ways. Hence 321, 213, and 132 contribute 2 decorated permutations each, 123 contributes 8, while 231 and 312 each contribute 1.
- Jordan Weaver, Table of n, a(n) for n = 0..50
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349457
Number of singular positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 4, 70, 825, 8526, 85372, 870756
Offset: 0
For n = 4, the a(4) = 4 singular positroid varieties correspond to the decorated permutations whose underlying permutations are 2413, 3421, 3142, and 4312 in one-line notation. Note that none of these permutations contain fixed points, hence no decorations are needed.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349456
Number of singular positroid varieties corresponding to derangements in S_n.
Original entry on oeis.org
0, 0, 0, 0, 4, 30, 225, 1736, 14476, 132396
Offset: 0
For n=4 the a(4)=4 derangements in one-line notation corresponding to singular positroid varieties are 2413, 3421, 3142, and 4312.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349413
Number of smooth positroid varieties corresponding to derangements in S_n.
Original entry on oeis.org
1, 0, 1, 2, 5, 14, 40, 118, 357, 1100
Offset: 0
For n=4, the a(4)=5 derangements in one-line notation are 2143, 4321, 2341, 4123, and 3412.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A334156
Triangle read by rows: T(n,m) is the number of length n decorated permutations avoiding the word 0^m = 0...0 of m 0's, where 1 <= m <= n.
Original entry on oeis.org
1, 2, 4, 6, 12, 15, 24, 48, 60, 64, 120, 240, 300, 320, 325, 720, 1440, 1800, 1920, 1950, 1956, 5040, 10080, 12600, 13440, 13650, 13692, 13699, 40320, 80640, 100800, 107520, 109200, 109536, 109592, 109600, 362880, 725760, 907200, 967680, 982800, 985824, 986328, 986400, 986409
Offset: 1
For (n,m) = (3,2), the T(3,2) = 12 length 3 decorated permutations avoiding 0^2 = 00 are 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321.
Triangle begins:
1
2, 4
6, 12, 15
24, 48, 60, 64
120, 240, 300, 320, 325
-
Array[Accumulate[#!/Range[0,#-1]!]&,10] (* Paolo Xausa, Jan 08 2024 *)
-
T(n,m)={sum(j=0, m-1, n!/j!)} \\ Andrew Howroyd, May 11 2020
A334155
a(n) is the number of length n decorated permutations avoiding the pattern 001.
Original entry on oeis.org
1, 2, 5, 15, 57, 273, 1593, 10953, 86553, 771993, 7666713, 83871513, 1001957913, 12976997913, 181106559513, 2709277004313, 43247182412313, 733699248716313, 13182759232076313, 250070586344012313, 4994229502288460313, 104743211837530700313, 2301653725221036620313
Offset: 0
For n=3, the a(3)=15 decorated permutations avoiding 001 are 000, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321.
For n=5, 10302 does not avoid 001, because it contains the subword 002.
A334154
a(n) is the number of length n decorated permutations avoiding the pattern 012.
Original entry on oeis.org
1, 2, 5, 15, 54, 236, 1254, 7986, 59584, 509304, 4897272, 52237448, 611460432, 7787383488, 107155194928, 1583776282704, 25019083516416, 420609003810944, 7496930998018176, 141203784944996736, 2802115237399913728, 58432523737192745472, 1277372108617847278848
Offset: 0
For n=3, there are 16 decorated permutations of length 3 (000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321). All of these avoid 012 except 012 itself. Therefore, a(3) = 15.
For n=5, 02031 is a decorated permutation that does not avoid 012 because it contains the subword 023.
-
a(n) = n! + sum(j=1, n, sum(l=1, n-j+1, binomial(n-l,j-1)*binomial(n-j,l-1)*(l-1)!)); \\ Michel Marcus, May 11 2020
A322481
Permutation breadth triangle: B(n,k) is the number of permutations w in S_n with breadth(w) = k, where breadth(w) = min({ |i-j|+|w(i)-w(j)| : 1 <= i < j <= n }).
Original entry on oeis.org
0, 0, 2, 0, 6, 0, 0, 22, 2, 0, 0, 106, 14, 0, 0, 0, 630, 90, 0, 0, 0, 0, 4394, 644, 2, 0, 0, 0, 0, 35078, 5222, 20, 0, 0, 0, 0, 0, 315258, 47464, 158, 0, 0, 0, 0, 0, 0, 3149494, 477346, 1960, 0, 0, 0, 0, 0, 0
Offset: 1
For n=4, k=3, the B(4,3) = 2 permutations in S_4 with breadth 3 are [2,4,1,3] and [3,1,4,2] in one-line notation.
Triangle: B(n,k) begins:
0;
0, 2;
0, 6, 0;
0, 22, 2, 0;
0, 106, 14, 0, 0;
0, 630, 90, 0, 0, 0;
0, 4394, 644, 2, 0, 0, 0;
0, 35078, 5222, 20, 0, 0, 0, 0;
0, 315258, 47464, 158, 0, 0, 0, 0, 0;
0, 3149494, 477346, 1960, 0, 0, 0, 0, 0, 0;
Comments