A349458
Number of smooth positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
1, 2, 5, 16, 61, 256, 1132, 5174, 24229, 115654, 560741, 2754082, 13674212, 68522208, 346100952, 1760213254, 9006390373, 46329244034, 239455376071, 1242923653316, 6476376834789, 33863408028888, 177625109853808, 934404580376016
Offset: 0
For n = 3, the a(3) = 16 positroids correspond the decorated permutations with underlying permutations 231, 312, 321, 213, 132, and 123 in one-line notation. Each fixed point, e.g., the 2 in 321, can be colored in two ways. Hence 321, 213, and 132 contribute 2 decorated permutations each, 123 contributes 8, while 231 and 312 each contribute 1.
- Jordan Weaver, Table of n, a(n) for n = 0..50
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349413
Number of smooth positroid varieties corresponding to derangements in S_n.
Original entry on oeis.org
1, 0, 1, 2, 5, 14, 40, 118, 357, 1100
Offset: 0
For n=4, the a(4)=5 derangements in one-line notation are 2143, 4321, 2341, 4123, and 3412.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349457
Number of singular positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 4, 70, 825, 8526, 85372, 870756
Offset: 0
For n = 4, the a(4) = 4 singular positroid varieties correspond to the decorated permutations whose underlying permutations are 2413, 3421, 3142, and 4312 in one-line notation. Note that none of these permutations contain fixed points, hence no decorations are needed.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
Showing 1-3 of 3 results.
Comments