A349458
Number of smooth positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
1, 2, 5, 16, 61, 256, 1132, 5174, 24229, 115654, 560741, 2754082, 13674212, 68522208, 346100952, 1760213254, 9006390373, 46329244034, 239455376071, 1242923653316, 6476376834789, 33863408028888, 177625109853808, 934404580376016
Offset: 0
For n = 3, the a(3) = 16 positroids correspond the decorated permutations with underlying permutations 231, 312, 321, 213, 132, and 123 in one-line notation. Each fixed point, e.g., the 2 in 321, can be colored in two ways. Hence 321, 213, and 132 contribute 2 decorated permutations each, 123 contributes 8, while 231 and 312 each contribute 1.
- Jordan Weaver, Table of n, a(n) for n = 0..50
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349456
Number of singular positroid varieties corresponding to derangements in S_n.
Original entry on oeis.org
0, 0, 0, 0, 4, 30, 225, 1736, 14476, 132396
Offset: 0
For n=4 the a(4)=4 derangements in one-line notation corresponding to singular positroid varieties are 2413, 3421, 3142, and 4312.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A349457
Number of singular positroids in the Grassmannian variety Gr(k,n) for a fixed n and any 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 0, 4, 70, 825, 8526, 85372, 870756
Offset: 0
For n = 4, the a(4) = 4 singular positroid varieties correspond to the decorated permutations whose underlying permutations are 2413, 3421, 3142, and 4312 in one-line notation. Note that none of these permutations contain fixed points, hence no decorations are needed.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- S. Corteel, Crossings and alignments of permutations, arXiv:math/0601469 [math.CO], 2006.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A353131
Triangle read by rows of partial Bell polynomials B_{n,k} (x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, n>=1, 1<=k<=n.
Original entry on oeis.org
2, 2, 4, 12, 12, 8, 72, 108, 48, 16, 480, 960, 600, 160, 32, 3600, 9360, 7320, 2640, 480, 64, 30240, 100800, 95760, 42000, 10080, 1344, 128, 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256, 2903040, 15240960, 20442240, 12337920, 4142880, 854784, 112896, 9216, 512
Offset: 1
For n=4,k=2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3)=4x_1x_3+3x_2^2, so a(4,2)=B_{4,2}(2,2,12)=4*2*12+3*2^2=108.
Triangle starts:
[1] 2;
[2] 2, 4;
[3] 12, 12, 8;
[4] 72, 108, 48, 16;
[5] 480, 960, 600, 160, 32;
[6] 3600, 9360, 7320, 2640, 480, 64;
[7] 30240, 100800, 95760, 42000, 10080, 1344, 128;
[8] 282240, 1189440, 1350720, 700560, 201600, 34944, 3584, 256.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
A353132
Triangle read by rows of partial Bell polynomials B_{n,k}(x_1,...,x_{n-k+1}) evaluated at 2, 2, 12, 72, ..., (n-k)(n-k+1)!, divided by (n-k+1)!, n >= 1, 1 <= k <= n.
Original entry on oeis.org
2, 1, 4, 2, 6, 8, 3, 18, 24, 16, 4, 40, 100, 80, 32, 5, 78, 305, 440, 240, 64, 6, 140, 798, 1750, 1680, 672, 128, 7, 236, 1876, 5838, 8400, 5824, 1792, 256, 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512, 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024
Offset: 1
For n = 4, k = 2, the partial Bell polynomial is B_{4,2}(x_1,x_2,x_3) = 4*x_1*x_3 + 3*x_2^2, so T(4,2) = B_{4,2}(2,2,12) - (4*2*12 + 3*2^2)/3! = 18.
Triangle begins:
[1] 2;
[2] 1, 4;
[3] 2, 6, 8;
[4] 3, 18, 24, 16;
[5] 4, 40, 100, 80, 32;
[6] 5, 78, 305, 440, 240, 64;
[7] 6, 140, 798, 1750, 1680, 672, 128;
[8] 7, 236, 1876, 5838, 8400, 5824, 1792, 256;
[9] 8, 378, 4056, 17136, 34524, 35616, 18816, 4608, 512;
[10] 9, 580, 8190, 45480, 122682, 175896, 137760, 57600, 11520, 1024.
- Jordan Weaver, Rows 1 to 40 of triangle, flattened
- E. T. Bell, Partition polynomials, Ann. Math., 29 (1927-1928), 38-46.
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Sara C. Billey and Jordan E. Weaver, Criteria for smoothness of Positroid varieties via pattern avoidance, Johnson graphs, and spirographs, arXiv:2207.06508 [math.CO], 2022.
- A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710-1752.
- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764 [math.CO], 2006.
Showing 1-5 of 5 results.
Comments