A334154 a(n) is the number of length n decorated permutations avoiding the pattern 012.
1, 2, 5, 15, 54, 236, 1254, 7986, 59584, 509304, 4897272, 52237448, 611460432, 7787383488, 107155194928, 1583776282704, 25019083516416, 420609003810944, 7496930998018176, 141203784944996736, 2802115237399913728, 58432523737192745472, 1277372108617847278848
Offset: 0
Keywords
Examples
For n=3, there are 16 decorated permutations of length 3 (000, 001, 010, 100, 012, 102, 120, 021, 201, 210, 123, 132, 213, 231, 312, and 321). All of these avoid 012 except 012 itself. Therefore, a(3) = 15. For n=5, 02031 is a decorated permutation that does not avoid 012 because it contains the subword 023.
Programs
-
PARI
a(n) = n! + sum(j=1, n, sum(l=1, n-j+1, binomial(n-l,j-1)*binomial(n-j,l-1)*(l-1)!)); \\ Michel Marcus, May 11 2020
Formula
a(n) = n! + Sum_{j=1..n} Sum_{l=1..n-j+1} binomial(n-l,j-1)*binomial(n-j,l-1)*(l-1)!.
Comments