A176790 Honaker primes of the form k^2 + 1.
3137, 4357, 13457, 80657, 115601, 184901, 309137, 341057, 1008017, 1073297, 4227137, 5541317, 11806097, 16974401, 18576101, 22848401, 24443137, 24542117, 27625537, 28132417, 30913601, 39112517, 42432197, 46049797, 46321637, 52417601, 71132357, 84713617, 92736901
Offset: 1
Examples
a(1) = 3137 = 56^2 + 1 = A033548(24). a(2) = 4357 = 66^2 + 1 = A033548(31).
References
- M. Aigner, Diskrete Mathematik, Vieweg u. Teubner, 6. Aufl., 2006.
- E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, Berlin, 1985.
- H. Scheid, Zahlentheorie, Spektrum Akademischer Verlag, 4. Aufl., 2006.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..1570
Programs
-
Mathematica
fHQ[n_]:=Plus@@IntegerDigits@n==Plus@@IntegerDigits@PrimePi@n;Select[Range[10000]^2+1, PrimeQ[#] && fHQ[#] &] (* K. D. Bajpai, Apr 06 2021 *)
-
PARI
for(n =1, 50000, my(k=n^2+1); if(isprime(k) && vecsum(digits(k))==vecsum(digits(primepi(k))), print1(k, ", "))); \\ K. D. Bajpai, Apr 06 2021
Extensions
Comments tightened by R. J. Mathar, Jun 07 2010
a(21)-a(29) from K. D. Bajpai, Apr 06 2021
Comments