A327054 a(n) is the smallest number m such that the antiharmonic mean of the divisors is n, or 0 if no such m exists.
1, 0, 4, 0, 0, 0, 9, 0, 0, 0, 16, 0, 20, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81, 0, 100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(3) = 4 because 4 is the smallest number m with sigma_2(m) / sigma_1(m) = 3; sigma_2(4) / sigma_1(4) = 21 / 7 = 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
A327054:=func
; [A327054(n): n in[1..100]]; -
Maple
# This uses the b-file for A004394 # See comment at A176799 K:= 100: # to get terms <= K M:= 36 * K^2/Pi^4: for i from 1 while A004394[i] < M do od: r:= numtheory:-sigma(A004394[i])/A004394[i]: V:= Vector(K): for m from 1 to r*K do F:= numtheory:-divisors(m); v:= add(d^2, d=F)/add(d, d=F); if v::integer and v <= K and V[v] = 0 then V[v]:= m fi; od: convert(V,list); # Robert Israel, Sep 05 2024
Comments