A176811 Number of primes between 2*(lesser of n-th twin prime pair) and 2*(greater of n-th twin prime pair).
1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 1
Keywords
Examples
a(1)=1 because 2*3 < 7 (prime) < 2*5; a(2)=2 because 2*5 < 11 (prime) < 13(prime) < 2*7; a(3)=1 because 2*11 < 23 (prime) < 2*13.
Programs
-
Maple
A001359 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a+2) then return a; end if; end do: end if; end proc: A006512 := proc(n) A001359(n)+2 ; end proc: A176811 := proc(n) numtheory[pi](2*A006512(n)) - numtheory[pi](2*A001359(n)) ; end proc: seq(A176811(n),n=1..120) ; # R. J. Mathar, Apr 27 2010
-
Mathematica
PrimePi[2*#[[2]]]-PrimePi[2*#[[1]]]&/@Select[Partition[Prime[Range[1000]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Jul 21 2023 *)
Extensions
Terms corrected starting at a(34) by R. J. Mathar, Apr 27 2010
Comments