cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176811 Number of primes between 2*(lesser of n-th twin prime pair) and 2*(greater of n-th twin prime pair).

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 26 2010

Keywords

Comments

Number of primes between 2*A001359(n) and 2*A006512(n).
Number of primes between A108605(n) and A176810(n).
Number of primes between 2*A077800(2n-1) and 2*A077800(2n).

Examples

			a(1)=1 because 2*3 < 7 (prime) < 2*5;
a(2)=2 because 2*5 < 11 (prime) < 13(prime) < 2*7;
a(3)=1 because 2*11 < 23 (prime) < 2*13.
		

Crossrefs

Programs

  • Maple
    A001359 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+2 by 2 do if isprime(a) and isprime(a+2) then return a; end if; end do: end if; end proc:
    A006512 := proc(n) A001359(n)+2 ; end proc:
    A176811 := proc(n) numtheory[pi](2*A006512(n)) - numtheory[pi](2*A001359(n)) ; end proc:
    seq(A176811(n),n=1..120) ; # R. J. Mathar, Apr 27 2010
  • Mathematica
    PrimePi[2*#[[2]]]-PrimePi[2*#[[1]]]&/@Select[Partition[Prime[Range[1000]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Jul 21 2023 *)

Extensions

Terms corrected starting at a(34) by R. J. Mathar, Apr 27 2010