cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176835 Number of positive integers k for which k^2 - n*k is a square.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 5, 3, 2, 3, 2, 2, 5, 2, 2, 5, 3, 2, 4, 2, 2, 5, 2, 4, 5, 2, 5, 3, 2, 2, 5, 5, 2, 5, 2, 2, 8, 2, 2, 8, 3, 3, 5, 2, 2, 4, 5, 5, 5, 2, 2, 5, 2, 2, 8, 5, 5, 5, 2, 2, 5, 5, 2, 8, 2, 2, 8, 2, 5, 5, 2, 8, 5, 2, 2, 5, 5, 2, 5, 5, 2, 8, 5, 2, 5, 2, 5, 11, 2, 3, 8, 3
Offset: 1

Views

Author

Jens Voß, Apr 27 2010

Keywords

Comments

The number of solutions to the Diophantine equation x^2 - 4*y^2 = n^2 for x,y >= 0, where k = (1+x)/2 and k^2 - n*k = y^2. - R. J. Mathar, May 02 2010

Examples

			A176835(9) = 3 because the three numbers 9^2 - 9*9 = 0, 12^2 - 9*12 = 36 and 25^2 - 9*25 = 400 are squares.
		

Crossrefs

Programs

  • Maple
    A176835 := proc(n) N := n^2 ; a := 0 ; for d in numtheory[divisors](N) do d2 := N/d ; x := (d+d2)/2 ; y := (d-d2)/4 ; if type(x,'integer') and type(y,'integer') and x>=0 and y >= 0 then a := a+1 ; end if; end do: a ; end proc: seq(A176835(n),n=1..100) ; # R. J. Mathar, May 02 2010
  • Mathematica
    a[n_] := Solve[k >= n && x >= 0 && k^2 - n k == x^2, {k, x}, Integers] // Length;
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 20 2023 *)
  • PARI
    A176835(n) = { my(n2 = n^2, s=0); fordiv(n2,d,my(d2=n2/d, x = (d+d2)/2, y = (d-d2)/4); if((1==denominator(x))&&(1==denominator(y))&&(x>=0)&&(y>=0),s++)); (s); }; \\ Antti Karttunen, Sep 28 2018, after R. J. Mathar's Maple-program

Formula

a(n) = A176836(n) - A176837(n).

Extensions

More terms from R. J. Mathar, May 02 2010