A176839 The number of iterations to reach 1 under the map x -> x-tau(phi(x)), starting at n.
0, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 5, 5, 5, 4, 6, 5, 6, 5, 7, 5, 7, 6, 7, 6, 8, 6, 7, 7, 7, 7, 9, 8, 8, 7, 8, 8, 10, 8, 9, 9, 11, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 10, 11, 11, 12, 11, 12, 12, 12, 12, 12, 12, 13, 11, 12, 13, 13, 12, 13, 13, 13, 12, 13, 14, 14, 14
Offset: 1
Keywords
Examples
a(12)=4 because f(12) = 12 - tau(phi(12)) = 12 - tau(4) = 12 - 3 = 9; f(9) = 9 - tau(phi(9)) = 9 - tau(6) = 9 - 4 = 5; f(5) = 5 - tau(phi(5)) = 5 - tau(4) = 5 - 3 = 2; f(2) = 2 - tau(phi(2)) = 2 - tau(1) = 2 - 1 = 1, and a(12) = 4.
Crossrefs
Cf. A062821.
Programs
-
Maple
A062821 := proc(n) numtheory[tau](numtheory[phi](n)) ; end proc: A176839 := proc(n) a := 0 ; x := n ; while x <> 1 do x := x-A062821(x) ; a := a+1 ; end do: a ; end proc: # R. J. Mathar, Oct 11 2011
-
Mathematica
f[n_] := If[n == 1, 1, n - DivisorSigma[0, EulerPhi[n]]]; a[n_] := Length[FixedPointList[f, n]] - 2; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 09 2024 *)
Comments