cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176881 a(n)=p-q for n-th product of 2 distinct primes p and q (q

Original entry on oeis.org

1, 3, 5, 2, 4, 9, 11, 8, 15, 2, 17, 10, 21, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4, 111, 42, 76, 6, 80
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2010

Keywords

Comments

Where products of two distinct primes are in A006881.
If Polignac's conjecture is true, then every even positive integer occurs infinitely many times in this sequence. - Clark Kimberling, Apr 25 2016

Examples

			a(1)=1 because 1=3-2 for A006881(1)=6=3*2; a(2)=3 because 3=5-2 for A006881(2)=10=5*2.
		

Crossrefs

Programs

  • Maple
    A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and nops(numtheory[factorset](a)) =2 then return a; end if; end do: end if; end proc:
    A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc:
    A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc:
    for n from 1 to 130 do c := A006881(n) ; printf("%d,",A006530(c)-A020639(c)) ; end do:
    # R. J. Mathar, May 01 2010
  • Mathematica
    mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G.Wilson v, Feb 07 2012 *)
    u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
    u1 = Table[u[[k]][[1]], {k, 1, Length[t]}]  (* A096916 *)
    PrimePi[u1]  (* A270650 *)
    v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
    v1 = Table[v[[k]][[1]], {k, 1, Length[t]}]  (* A070647 *)
    PrimePi[v1]  (* A270652 *)
    d = v1 - u1  (* A176881 *)  (* Clark Kimberling, Apr 25 2016 *)

Extensions

Entries checked by R. J. Mathar, May 01 2010