A176881
a(n)=p-q for n-th product of 2 distinct primes p and q (q
1, 3, 5, 2, 4, 9, 11, 8, 15, 2, 17, 10, 21, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4, 111, 42, 76, 6, 80
Offset: 1
Keywords
Examples
a(1)=1 because 1=3-2 for A006881(1)=6=3*2; a(2)=3 because 3=5-2 for A006881(2)=10=5*2.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A006881 := proc(n) if n = 1 then 6; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 and nops(numtheory[factorset](a)) =2 then return a; end if; end do: end if; end proc: A020639 := proc(n) numtheory[factorset](n) ; min(op(%)) ; end proc: A006530 := proc(n) numtheory[factorset](n) ; max(op(%)) ; end proc: for n from 1 to 130 do c := A006881(n) ; printf("%d,",A006530(c)-A020639(c)) ; end do: # R. J. Mathar, May 01 2010
-
Mathematica
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G.Wilson v, Feb 07 2012 *) u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}]; u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *) PrimePi[u1] (* A270650 *) v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}]; v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *) PrimePi[v1] (* A270652 *) d = v1 - u1 (* A176881 *) (* Clark Kimberling, Apr 25 2016 *)
Extensions
Entries checked by R. J. Mathar, May 01 2010
Comments