cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270650 Min(i, j), where p(i)*p(j) is the n-th term of A006881.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 25 2016

Keywords

Examples

			A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes.  The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).
		

Crossrefs

Programs

  • Mathematica
    mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)
    u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
    u1 = Table[u[[k]][[1]], {k, 1, Length[t]}]  (* A096916 *)
    PrimePi[u1]  (* A270650 *)
    v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
    v1 = Table[v[[k]][[1]], {k, 1, Length[t]}]  (* A070647 *)
    PrimePi[v1]  (* A270652 *)
    d = v1 - u1  (* A176881 *)
    Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)

A270652 Max(i,j), where p(i)*p(j) is the n-th term of A006881.

Original entry on oeis.org

2, 3, 4, 3, 4, 5, 6, 5, 7, 4, 8, 6, 9, 7, 5, 8, 10, 11, 6, 9, 12, 5, 13, 7, 14, 10, 6, 11, 15, 8, 16, 12, 9, 17, 7, 18, 13, 14, 8, 19, 15, 20, 6, 10, 21, 11, 22, 16, 9, 23, 17, 24, 18, 12, 7, 25, 19, 26, 10, 13, 27, 8, 20, 28, 14, 11, 29, 21, 7, 30, 15, 22
Offset: 1

Views

Author

Clark Kimberling, Apr 25 2016

Keywords

Examples

			A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes.  The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (2,3,4,3).
		

Crossrefs

Programs

  • Mathematica
    mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)
    u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
    u1 = Table[u[[k]][[1]], {k, 1, Length[t]}]  (* A096916 *)
    PrimePi[u1]  (* A270650 *)
    v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
    v1 = Table[v[[k]][[1]], {k, 1, Length[t]}]  (* A070647 *)
    PrimePi[v1]  (* A270652 *)
    d = v1 - u1  (* A176881 *)
    Map[PrimePi[FactorInteger[#][[-1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, primefactors
    def A270652(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        return primepi(max(primefactors(bisection(f,n,n)))) # Chai Wah Wu, Oct 23 2024

A324331 a(n) = (n-1)^2 - phi(n)*sigma(n), where phi is A000010 and sigma is A000203.

Original entry on oeis.org

-1, -2, -4, -5, -8, 1, -12, -11, -14, 9, -20, 9, -24, 25, 4, -23, -32, 55, -36, 25, 16, 81, -44, 49, -44, 121, -44, 57, -56, 265, -60, -47, 64, 225, 4, 133, -72, 289, 100, 81, -80, 529, -84, 169, 64, 441, -92, 225, -90, 541, 196, 249, -104, 649, 36, 145, 256, 729, -116, 793
Offset: 1

Views

Author

Michel Marcus, Feb 23 2019

Keywords

Comments

For squarefree semiprimes n = p*q a(n)=(p-q)^2 is a square. But the converse, a(n) is prime, can happen: see A324332.

Crossrefs

Programs

  • Mathematica
    Table[(n-1)^2 - EulerPhi[n]*DivisorSigma[1, n], {n, 1, 60}] (* Vaclav Kotesovec, Feb 23 2019 *)
  • PARI
    a(n) = (n-1)^2 - eulerphi(n)*sigma(n);

Formula

a(A006881(n)) = A176881(n)^2.
a(n) = A069249(n) - 2*n + 1. - Amiram Eldar, Dec 04 2023
Showing 1-3 of 3 results.