A176900 a(n) = sin((2*n+5)*Pi/6)*(n+1)*2^(n+1).
1, -4, -24, -32, 80, 384, 448, -1024, -4608, -5120, 11264, 49152, 53248, -114688, -491520, -524288, 1114112, 4718592, 4980736, -10485760, -44040192, -46137344, 96468992, 402653184, 419430400, -872415232, -3623878656, -3758096384
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-12,16,-16).
Crossrefs
Cf. A002162.
Programs
-
Mathematica
Table[Sin[(2*n + 5)*Pi/6]*(n + 1)*2^(n + 1), {n, 0, 27}] (* Amiram Eldar, Feb 26 2022 *)
-
PARI
a(n)=[1,-1,-2,-1,1,2][n%6+1]*(n+1)*2^n
Formula
Sum_{k>=0} 1/a(k) = log(2), from log((1+x)/(1-x+x^2)) at x=1/2.
G.f.: (1-8*x+4*x^2)/(1-2*x+4*x^2)^2.
Sum_{n>=0} (-1)^n/a(n) = log(7/2). - Amiram Eldar, Feb 26 2022