A176948 a(n) is the smallest solution x to A176774(x)=n; a(n)=0 if this equation has no solution.
3, 4, 5, 0, 7, 8, 24, 27, 11, 33, 13, 14, 42, 88, 17, 165, 19, 20, 60, 63, 23, 69, 72, 26, 255, 160, 29, 87, 31, 32, 315, 99, 102, 208, 37, 38, 114, 805, 41, 123, 43, 44, 132, 268, 47, 696, 475, 50, 150, 304, 53, 159, 162, 56, 168, 340, 59, 177, 61, 62, 615, 1309, 192, 388
Offset: 3
Keywords
Examples
For n=9, 24 is a nonagonal number, but not an octagonal number, heptagonal number, hexagonal number, etc. The smaller nonagonal number 9 is also a square number. Thus, a(9) = 24. - _Michael B. Porter_, Jul 16 2016
Links
- Chai Wah Wu, Table of n, a(n) for n = 3..10000
Programs
-
Maple
A139601 := proc(k,n) option remember ; n/2*( (k-2)*n-k+4) ; end proc: A176774 := proc(n) option remember ; local k,m,pol ; for k from 3 do for m from 0 do pol := A139601(k,m) ; if pol = n then return k ; elif pol > n then break; end if; end do: end do: end proc: A176948 := proc(n) if n = 6 then 0; else for x from 3 do if A176774(x)= n then return x ; end if; end do: end if; end proc: seq(A176948(n),n=3..80) ; # R. J. Mathar, May 03 2010
-
Mathematica
A176774[n_] := A176774[n] = (m = 3; While[Reduce[k >= 1 && n == k (k (m - 2) - m + 4)/2, k, Integers] == False, m++]; m); a[6] = 0; a[p_?PrimeQ] := p; a[n_] := (x = 3; While[A176774[x] != n, x++]; x); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 3, 100}] (* Jean-François Alcover, Sep 04 2016 *)
Formula
a(p) = p if p is any odd prime.
Extensions
More terms from R. J. Mathar, May 03 2010
Comments