A176988 Triangle read by rows, which contains Noll's indices of Zernike polynomials in row n sorted along increasing index of the azimuthal quantum number.
1, 3, 2, 5, 4, 6, 9, 7, 8, 10, 15, 13, 11, 12, 14, 21, 19, 17, 16, 18, 20, 27, 25, 23, 22, 24, 26, 28, 35, 33, 31, 29, 30, 32, 34, 36, 45, 43, 41, 39, 37, 38, 40, 42, 44, 55, 53, 51, 49, 47, 46, 48, 50, 52, 54, 65, 63, 61, 59, 57, 56, 58, 60, 62, 64, 66, 77, 75, 73, 71, 69, 67, 68, 70, 72, 74, 76, 78, 91, 89, 87, 85, 83, 81, 79, 80, 82, 84, 86, 88, 90, 105, 103, 101, 99, 97, 95, 93, 92, 94, 96, 98, 100, 102, 104, 119, 117, 115, 113, 111, 109, 107, 106, 108, 110, 112, 114, 116, 118, 120
Offset: 0
Links
- N. Chetty and D. J. Griffith, Zernike-basis expansion of the fractional and radial Hilbert phase masks, Current Applied Physics, 15 (2015) 739-747
- R. J. Noll, Zernike polynomials and atmospheric turbulence, J. Opt. Soc. Am 66 (1976) 207.
- Gerhard Ramsebner, Nollindex of the Zernike polynomials (animated SVG)
- Thomas Risse, Least Square Approximation with Zernike Polynomials Using SAGE, (2011).
- Wikipedia, Zernike Polynomials
- Index to sequences related to the permutation of the positive integers
Programs
-
Maple
Noll := proc(n,m) n*(n+1)/2+abs(m) ; if m>=0 and modp(n,4) in {2,3} then %+1 ; elif m<=0 and modp(n,4) in {0,1} then %+1 ; else % ; end if; end proc: A176988 := proc(n,k) Noll(n,-n+2*k) ; end proc: seq(seq(A176988(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 27 2025
-
PARI
A176988(n, k) = my(j=k+n*(n+1)/2, m=2*j-n*(n+2)); (n*(n+1)/2 + abs(m) + ((n%4<=1 && m<=0) || (n%4>1 && m>=0)) ); row(n) = vector(n+1, k, A176988(n, k-1)); \\ Gerhard Ramsebner, Nov 10 2024
Formula
T(n,k) = n*(n+1)/2 + abs(m) + h where 0<=k<=n, j=k+n*(n+1)/2, m=2*j-n*(n+2) and h=1 if mod(n,4)<=1 and m<=0 or mod(n,4)>1 and m>=0 otherwise h=0. - Gerhard Ramsebner, Nov 10 2024
Comments