cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176991 Triangle t(n,m) = binomial(n+m,m) - binomial(n-m,m), 1<=m<=n, read by rows.

Original entry on oeis.org

2, 2, 6, 2, 10, 20, 2, 14, 35, 70, 2, 18, 56, 126, 252, 2, 22, 83, 210, 462, 924, 2, 26, 116, 330, 792, 1716, 3432, 2, 30, 155, 494, 1287, 3003, 6435, 12870, 2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620, 2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756
Offset: 1

Views

Author

Roger L. Bagula, Dec 08 2010

Keywords

Comments

Row sums are binomial(2n+1,n+1)-1-A000071(n+1) = A001700(n)-A000045(n+1) = 2, 8, 32, 121, 454, 1703, 6414, 24276, 92323, 352627,....

Examples

			2;
2, 6;
2, 10, 20;
2, 14, 35, 70;
2, 18, 56, 126, 252;
2, 22, 83, 210, 462, 924;
2, 26, 116, 330, 792, 1716, 3432;
2, 30, 155, 494, 1287, 3003, 6435, 12870;
2, 34, 200, 710, 2002, 5005, 11440, 24310, 48620;
2, 38, 251, 986, 3002, 8008, 19448, 43758, 92378, 184756;
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = Binomial[n + (m - 1), (m - 1)] - Binomial[n - (m - 1), (m - 1)];
    Table[Table[t[n, m], {m, 2, n + 1}], {n, 1, 10}];
    Flatten[%]

Formula

t(n,m) = A046899(n,m) - A011973(n,m), 0<=m<=n/2.