cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176999 An encoding of the Collatz iteration of n.

Original entry on oeis.org

1, 1111010, 11, 11110, 11110101, 1111011101101010, 111, 1111011101101010110, 111101, 11110111011010, 111101011, 111101110, 11110111011010101, 11110111110101010, 1111, 111101110110, 11110111011010101101, 11110111011010111010, 1111011, 1111110, 111101110110101
Offset: 2

Views

Author

T. D. Noe, Apr 30 2010

Keywords

Comments

Working from right to left, the sequence of 0's and 1's in a(n) encode, respectively, the sequence of 3x+1 and x/2 steps in the Collatz iteration of n. This is reverse one's complement of Garner's parity vector. Criswell mentions this encoding.
The length of a(n) is A006577(n). The number of 1's in a(n) is A006666(n). The number of 0's in a(n) is A006667(n). The number of terms having length k is A005186(k).

Examples

			a(5)=11110 because the Collatz iteration for 5 is a 3x+1 step (0) followed by 4 x/2 steps (four 1's).
		

Crossrefs

Programs

  • Mathematica
    encode[n_]:=Module[{m=n,p,lst={}}, While[m>1, p=Mod[m,2]; AppendTo[lst,1-p]; If[p==0, m=m/2, m=3m+1]]; FromDigits[Reverse[lst]]]; Table[encode[n], {n,2,26}]