cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177164 a(n) = (n^r - 1)/r^2, where r = (n^(n-1) - 1)/(n-1).

Original entry on oeis.org

1, 5, 9972894583, 449853889404077636694265177903207995382439448590987815041588427345865911961016023550064137351211162870609
Offset: 2

Views

Author

Alexander Adamchuk, May 04 2010

Keywords

Comments

The next term has 1204 digits.
r = (n^(n-1) - 1)/(n-1) = A060072(n) is the (n-1)-digit repunit in base n.
r^2 divides n^r - 1 for all bases n > 1.

Examples

			a(10) = (10^111111111 - 1)/111111111^2.
		

Crossrefs

Programs

  • Mathematica
    Table[(n^((n^(n - 1) - 1)/(n - 1)) - 1)/((n^(n - 1) - 1)/(n - 1))^2, {n, 2, 6}]

Formula

a(n) = (n^((n^(n-1) - 1)/(n-1)) - 1)/((n^(n-1) - 1)/(n-1))^2.
a(n) = (n^A060072(n) - 1)/A060072(n)^2.