A177192 Primes p such that p^p ends in p and p is not congruent to 1 (mod 10).
5, 193, 499, 557, 1249, 1693, 4999, 7057, 31249, 49999, 52057, 54193, 56249, 79193, 281249, 829193, 952057, 4531249, 4999999, 8281249, 8704193, 17077057, 39954193, 54577057, 63281249, 64954193, 904577057, 2154577057, 3092077057, 3958704193
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Automorphic Number.
- Index entries for sequences related to automorphic numbers
- Index entries for sequences related to final digits of numbers
Programs
-
Mathematica
fQ[n_] := PowerMod[n, n, 10^Floor[Log[10, n] + 1]] == n; p = 2; lst = {}; While[p < 10^12, If[ Mod[p, 10] != 1 && fQ@p, AppendTo[lst, p]; Print@p]; p = NextPrime@p]; lst
Comments