A177218 Decimal expansion of the integral over cos(Pi*x)*x^(1/x) between 1/e and e.
1, 8, 7, 7, 7, 9, 0, 3, 1, 3, 2, 3, 0, 4, 2, 7, 7, 0, 4, 3, 3, 0, 1, 0, 5, 2, 9, 1, 2, 4, 3, 8, 7, 9, 7, 0, 8, 8, 2, 6, 6, 3, 6, 7, 7, 5, 5, 7, 9, 0, 0, 5, 4, 0, 2, 3, 5, 7, 1, 2, 0, 9, 0, 4, 4, 4, 6, 3, 1, 1, 2, 6, 1, 5, 5, 0, 2, 5, 9, 2, 6, 5, 2, 3, 9, 5, 4, 7, 9, 2, 3, 7, 2, 8, 6, 6, 0, 1, 3, 0, 5, 1, 6, 2, 1
Offset: 0
Examples
0.187779...
Links
- Marvin Ray Burns, Author's original inquiry
- R. J. Mathar, Numerical evaluation of the oscillatory integral over exp(i*pi*x)x^(1/x) between 1 and infinity, arXiv:0912.3844
Crossrefs
A157852 is the same integral from 1 to infinity.
Programs
-
Maple
Int( cos(Pi*x)*x^(1/x),x=exp(-1)..exp(1)) ; evalf(%) ; # R. J. Mathar, May 07 2010
-
Mathematica
RealDigits[ Re[NIntegrate[(-1)^n*n^(1/n), {n, 1/E, E}, WorkingPrecision -> 200]]]
Extensions
Definition simplified, keyword:cons inserted, offset corrected by R. J. Mathar, May 07 2010
Comments