cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177230 a(n) = determinant of n X n circulant matrix whose first row consists of the first n squares (beginning with 1).

Original entry on oeis.org

1, -15, 686, -62400, 9406375, -2117816064, 665460727820, -278158506983424, 149228699913026685, -99940926131200000000, 81720620766038589115418, -80119979953874981093376000, 92770427931597143858070722691, -125252587064115948721297529241600
Offset: 1

Views

Author

Missouri State University Problem-Solving Group (MSUPSG(AT)MissouriState.edu), May 05 2010

Keywords

Comments

This sequence is the solution to Problem #11467, proposed by Xiang Qian Chang, in the December 2009 issue of the American Mathematical Monthly.
Please notice that "The Wohascum County Problem Book" predates the Problem #11467 by 16 years. - Robert G. Wilson v, Aug 31 2014

Examples

			a(4) = -62400 = determinant
  | 1,  4,  9, 16|
  |16,  1,  4,  9|
  | 9, 16,  1,  4|
  | 4,  9, 16,  1|
		

References

  • George T. Gilbert, Mark I. Krusemeyer and Loren C. Larson, The Wohascum County Problem Book, The Mathematical Association of America, Dolciani Mathematical Expositions No. 14, 1993, problem 130 "Prove that det(...) = (-1)^(n-1)n^(n-2)(n+1)(2n+1)((n+2)^n-n^n)/12", page 31 and solution on page 216.

Crossrefs

Cf. A118707.

Programs

  • Magma
    [(-1)^n*n^(n-2)*(n^n-(n+2)^n)*Binomial(2*n+2,2)/12: n in [1..30]]; // G. C. Greubel, Apr 12 2024
    
  • Mathematica
    a[n_] := (-1)^(n - 1) n^(n - 2) (n + 1) (2 n + 1) ((n + 2)^n - n^n)/12; Array[a, 14] (* Robert G. Wilson v, Aug 31 2014 *)
  • PARI
    a(n) = (-1)^(n-1)*(n+1)*(2*n+1)*n^(n-2)*((n+2)^n-n^n)/12 \\ Charles R Greathouse IV, Aug 31 2014
    
  • SageMath
    [(-1)^n*n^(n-2)*(n^n-(n+2)^n)*binomial(2*n+2,2)/12 for n in range(1,31)] # G. C. Greubel, Apr 12 2024

Formula

a(n) = (-1)^(n-1)*(n+1)*(2*n+1)*n^(n-2)*((n+2)^n - n^n)/12.