cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177262 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} starting with exactly k consecutive integers (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 18, 4, 1, 1, 96, 18, 4, 1, 1, 600, 96, 18, 4, 1, 1, 4320, 600, 96, 18, 4, 1, 1, 35280, 4320, 600, 96, 18, 4, 1, 1, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1, 3265920, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1, 36288000, 3265920, 322560, 35280, 4320, 600, 96, 18, 4, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, May 15 2010

Keywords

Examples

			T(4,2)=4 because we have 1243, 2314, 3412, and 3421.
Triangle starts:
      1;
      1,    1;
      4,    1,   1;
     18,    4,   1,  1;
     96,   18,   4,  1,  1;
    600,   96,  18,  4,  1,  1;
   4320,  600,  96, 18,  4,  1,  1;
  35280, 4320, 600, 96, 18,  4,  1,  1;
		

Crossrefs

Cf. A000142 (row sums), A005165, A007489, A094258.

Programs

  • Magma
    A177262:= func< n,k | k eq n select 1 else (n-k)*Factorial(n-k) >;
    [A177262(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 18 2024
    
  • Maple
    T := proc (n, k) if k = n then 1 elif k < n then factorial(n-k)*(n-k) else 0 end if end proc: for n to 11 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= (n-k+1)! -(n-k)! +Boole[k==n];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 18 2024 *)
  • SageMath
    def A177262(n,k): return (n-k)*factorial(n-k) + int(k==n)
    flatten([[A177262(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 18 2024

Formula

T(n, k) = (n-k)*(n-k)! if k < n, otherwise T(n,n) = 1.
T(n, 1) = A094258(n) = (n-1)!(n-1).
Sum_{k=1..n} T(n, k) = A000142(n) (row sums).
Sum_{k=1..n} k*T(n,k) = Sum_{j=1..n} j! = A007489(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A005165(n). - G. C. Greubel, May 18 2024