cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177263 Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k as the last entry in the first block (1<=k<=n).

Original entry on oeis.org

1, 0, 2, 1, 1, 4, 4, 5, 5, 10, 18, 22, 23, 23, 34, 96, 114, 118, 119, 119, 154, 600, 696, 714, 718, 719, 719, 874, 4320, 4920, 5016, 5034, 5038, 5039, 5039, 5914, 35280, 39600, 40200, 40296, 40314, 40318, 40319, 40319, 46234, 322560, 357840, 362160, 362760, 362856, 362874, 362878, 362879, 362879, 409114
Offset: 1

Views

Author

Emeric Deutsch, May 16 2010

Keywords

Comments

A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 45123867 has 4 blocks: 45, 123, 8, and 67.
Mirror image of A177264.

Examples

			T(4,2)=5 because we have 12-4-3, 2-1-34, 2-1-4-3, 2-4-1-3, and 2-4-3-1 (the blocks are separated by dashes).
Triangle starts:
     1;
     0,    2;
     1,    1,    4;
     4,    5,    5,   10;
    18,   22,   23,   23,   34;
    96,  114,  118,  119,  119,  154;
   600,  696,  714,  718,  719,  719,  874;
  4320, 4920, 5016, 5034, 5038, 5039, 5039, 5914;
		

Crossrefs

Programs

  • Magma
    A003422:= func< n | (&+[Factorial(j): j in [0..n-1]]) >;
    A177263:= func< n,k | k eq n select A003422(n) else Factorial(n-1) - Factorial(n-k-1) >;
    [A177263(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, May 19 2024
    
  • Maple
    T := proc (n, k) if k <= n-1 then factorial(n-1)-factorial(n-k-1) elif k = n then sum(factorial(j), j = 0 .. n-1) else 0 end if end proc: for n to 10 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form
  • Mathematica
    A003422[n_]:= Sum[j!, {j,0,n-1}];
    T[n_, k_]:= If[k==n, A003422[n], (n-1)! -(n-k-1)!];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 19 2024 *)
  • SageMath
    def A003422(n): return sum(factorial(j) for j in range(n))
    def A177263(n,k): return A003422(n) if k==n else factorial(n-1) - factorial(n-k-1)
    flatten([[A177263(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, May 19 2024

Formula

T(n, k) = (n-1)! - (n-k-1)! if k <= n-1, otherwise T(n, n) = 0!+1!+...+(n-1)! = A003422(n).
T(n, 1) = A094304(n).
Sum_{k=1..n} T(n, k) = A000142(n) (row sums).
T(n, k) = A177264(n, n-k+1) (mirror image).