A177282 Number of permutations of 2 copies of 1..n with all adjacent differences <= 1 in absolute value.
1, 1, 6, 12, 26, 48, 86, 148, 250, 416, 686, 1124, 1834, 2984, 4846, 7860, 12738, 20632, 33406, 54076, 87522, 141640, 229206, 370892, 600146, 971088, 1571286, 2542428, 4113770, 6656256, 10770086, 17426404, 28196554, 45623024, 73819646, 119442740, 193262458
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n=1..197 from R. H. Hardin)
Programs
-
Maple
a:= proc(n) option remember; `if`(n<4, [1$2, 6, 12][n+1], ((8*n-31)*a(n-1) -(4*n-19)*a(n-2) -(3*n-10)*a(n-3) +(2*n-10)*a(n-4)) / (3*n-11)) end: seq(a(n), n=0..40); # Alois P. Heinz, Jan 14 2016
Formula
a(n) = (2n)!/2^n = A000680(n) for n<=2.