cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177349 Primes p for which no m! has a prime power factorization of the form 2^p*...*p^1*...

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 43, 59, 61, 83, 103, 107, 139, 151, 157, 163, 167, 179, 199, 211, 223, 227, 233, 241, 251, 257, 269, 283, 307, 313, 317, 331, 347, 373, 379, 409, 419, 433, 443, 457, 503, 509, 523, 541, 547, 563, 569, 571, 587, 601, 607, 617, 619, 643
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2010

Keywords

Comments

One can prove that for p>=5 the number of such m is 0 or 2.

Examples

			p=109 is not in the sequence because for m=112 we have 112! = 2^109*3^54*...*109 which is of the form 2^p*...*p*.. [_R. J. Mathar_, Oct 29 2010]
		

Crossrefs

Cf. A000142.

Programs

  • Maple
    isA177349 := proc(p) if isprime(p) then pid := numtheory[pi](p) ; for m from 1 do h2 := A115627(m,1) ; if h2 > p then return true; elif h2 = p then if A115627(m,pid) = 1 then return false; end if; end if; end do; else false; fi ; end proc:
    for i from 1 to 120 do p := ithprime(i) ; if isA177349(p) then printf("%d,",p); end if; end do: # R. J. Mathar, Oct 29 2010
  • Mathematica
    c[n_, p_] := Sum[IntegerExponent[k, p], {k, 2, n}]; m = 120; v = Table[0, {m}]; s = 0; n = 2; While[s <= Prime[m], s += IntegerExponent[n, 2]; If[ PrimeQ[s] && (i = PrimePi[s]) <= m && c[n, s] == 1, v[[i]] = 1]; n++]; t = Prime /@ (Position[v, ?(# == 0 &)] // Flatten); t (* _Amiram Eldar, Sep 13 2019 *)

Extensions

2 added, 109 replaced by 107, sequence extended beyond 199 by R. J. Mathar, Oct 29 2010