cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177356 a(n) is the index of the first 0 term in the rumor sequence with initial 0th term 1 and parameters b = 2 and n.

Original entry on oeis.org

1, 2, 5, 10, 3, 18, 7, 24, 23, 22, 13, 4, 19, 18, 9, 6, 15, 374, 13, 12, 11, 370, 369, 32, 367, 366, 5, 28, 363, 8, 361, 360, 37, 358, 21, 356, 355, 354, 353, 16, 351, 100, 349, 98, 347, 346, 95, 344, 93, 92, 91, 340, 89, 10, 15, 336, 31, 6, 333, 82, 331, 80, 25, 328, 327, 326
Offset: 1

Views

Author

Jerry Metzger, Dec 10 2010

Keywords

Comments

A rumor sequence (running modulus recurrence sequence) is defined as follows: fix integer parameters b > 1 and n > 0. Set z[0] = any integer, and, for k > 0, define z[k] to be the least nonnegative residue of b*z[k-1] modulo (k+n). The rumor sequence conjecture states that all such rumor sequences are eventually 0.

Examples

			For n = 15, the z-sequence terms are 1, 2, 4, 8, 16, 12, 3, 6, 12, 0, so a(15) = 9; that is, z[0] = 1, z[1] = 2, z[2] = 4, ..., z[8] = 12, and z[9] = 0. [Edited by _Petros Hadjicostas_, Dec 13 2019]
		

Crossrefs

Programs

  • Mathematica
    For[n=1,n<50,n++,k=0;Clear[z];z[0]=1;z[k_]:=z[k]=Mod[2z[k-1],k+n];
    While[z[k]>0,k++];Print[k];]

Formula

a(n) = inf{m > 0 | z[0] = 1, z[m] = 0, and z[k] = (2*z[k-1] mod (k + n)) for k = 1..m}. - Petros Hadjicostas, Dec 13 2019

Extensions

More terms from Petros Hadjicostas, Dec 13 2019