A177369 Expansion of g.f.: (1+4*x-4*x^2)/(1-3*x-4*x^2+4*x^3).
1, 7, 21, 87, 317, 1215, 4565, 17287, 65261, 246671, 931909, 3521367, 13305053, 50272991, 189953717, 717732903, 2711921613, 10246881583, 38717399589, 146292038647
Offset: 1
Keywords
References
- S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs, Pure Mathematics and Applications (PU.M.A.) 19 (2008), no. 2-3, 17-26.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- S. Kitaev, A. Burstein and T. Mansour. Counting independent sets in certain classes of (almost) regular graphs
- Index entries for linear recurrences with constant coefficients, signature (3,4,-4).
Programs
-
Mathematica
CoefficientList[Series[(1+4x-4x^2)/(1-3x-4x^2+4x^3),{x,0,20}],x] (* or *) LinearRecurrence[{3,4,-4},{1,7,21},20] (* Harvey P. Dale, May 10 2015 *)
Formula
G.f.:(1+4*x-4*x^2)/(1-3*x-4*x^2+4*x^3)
a(1)=1, a(2)=7, a(3)=21, a(n)=3*a(n-1)+4*a(n-2)-4*a(n-3). - Harvey P. Dale, May 10 2015
Extensions
Definition clarified by Harvey P. Dale, May 10 2015