A177375 Triangle t(n,k): the coefficient [x^k] of the series (1+x)^n + 2*n*x*(1+x)^(n-2), in row n, column k.
1, 1, 3, 1, 6, 1, 1, 9, 9, 1, 1, 12, 22, 12, 1, 1, 15, 40, 40, 15, 1, 1, 18, 63, 92, 63, 18, 1, 1, 21, 91, 175, 175, 91, 21, 1, 1, 24, 124, 296, 390, 296, 124, 24, 1, 1, 27, 162, 462, 756, 756, 462, 162, 27, 1, 1, 30, 205, 680, 1330, 1652, 1330, 680, 205, 30, 1
Offset: 0
Examples
1; 1, 3; 1, 6, 1; 1, 9, 9, 1; 1, 12, 22, 12, 1; 1, 15, 40, 40, 15, 1; 1, 18, 63, 92, 63, 18, 1; 1, 21, 91, 175, 175, 91, 21, 1; 1, 24, 124, 296, 390, 296, 124, 24, 1; 1, 27, 162, 462, 756, 756, 462, 162, 27, 1; 1, 30, 205, 680, 1330, 1652, 1330, 680, 205, 30, 1;
Crossrefs
Cf. A162246
Programs
-
Maple
A177375 := proc(n,k) (1+x)^n+2*n*x*(1+x)^(n-2) ; coeftayl(%,x=0,k) end proc: # R. J. Mathar, May 19 2013
-
Mathematica
p[x, 0, q_] := 1; p[x, 1, q_] := x + 1; p[x_, n_, q_] := p[x, n, q] = (1 + x)^n + 2*q*n*x*(1 + x)^(n - 2); Table[Flatten[Table[CoefficientList[p[x, n, q], x], {n, 0, 10}]], {q, 1, 10}]
Comments