A177405 Form triangle of weighted Farey fractions; read numerators by rows.
0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 4, 5, 2, 5, 4, 1, 0, 1, 2, 1, 4, 5, 2, 5, 4, 1, 2, 3, 4, 13, 14, 5, 4, 3, 2, 9, 12, 5, 14, 13, 4, 9, 6, 1, 0, 1, 2, 1, 4, 5, 2, 5, 4, 1, 2, 3, 4, 13, 14, 5, 4, 3, 2, 9, 12, 5, 14, 13, 4, 9, 6, 1, 4, 5, 2, 7, 8, 3, 10, 11
Offset: 0
Examples
Triangle begins: 0 1 - - 1 1 0 1 2 1 - - - - 1 3 3 1 0 1 2 1 4 5 2 5 4 1 - - - - - - - - - - 1 5 7 3 9 9 3 7 5 1 0 1 .2 1 .4 .5 2 .5 .4 1 2 3 4 13 14 5 4 3 2 .9 12 5 14 13 4 .9 6 1 - - -- - -- -- - -- -- - - - - -- -- - - - - -- -- - -- -- - -- - - 1 7 11 5 17 19 7 17 13 3 5 7 9 27 27 9 7 5 3 13 17 7 19 17 5 11 7 1
References
- James Propp, Posting to the Math Fun Mailing List, Dec 10 2010.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..29533 (first 10 rows of triangle)
- Dhroova Aiylam, Tanya Khovanova, Weighted Mediants and Fractals, arXiv:1711.01475 [math.NT], 2017.
Programs
-
Mathematica
Mma code from James Propp: Lengthen[L_] := Module[{i, M}, M = Table[0, {3 Length[L]}]; M[[1]] = Numerator[L[[1]]]/(2 + Denominator[L[[1]]]); M[[2]] = 2*Numerator[L[[1]]]/(1 + 2 Denominator[L[[1]]]); For[i = 1, i < Length[L], i++, M[[3 i]] = L[[i]]; M[[3 i + 1]] = (2 Numerator[L[[i]]] + Numerator[L[[i + 1]]])/(2 Denominator[L[[i]]] + Denominator[L[[i + 1]]]); M[[3 i + 2]] = (Numerator[L[[i]]] + 2 Numerator[L[[i + 1]]])/(Denominator[L[[i]]] + 2 Denominator[L[[i + 1]]])]; M[[3 Length[L]]] = L[[Length[L]]]; Return[M]] WF[n_] := WF[n] = If[n == 0, {1}, Lengthen[WF[n - 1]]]
Extensions
a(45)-a(80) and some corrected terms from Nathaniel Johnston, Apr 12 2011
Comments